362 research outputs found

    Pigmented Villonodular Synovitis of the Elbow: A Case Report and Sonographic Findings

    Get PDF
    Pigmented villonodular synovitis (PVNS) is a disease rarely found in the elbow, and there is limited literature describing its ultrasonographic morphology. We report a case of elbow PVNS, showing the sonographic features of a hyperechoic, heterogenous, irregularly-shaped mass. Compared to knee joint PVNS, elbow joint PVNS has less joint effusion. This is also the first article to demonstrate the increased blood perfusion of PVNS with power-mode Doppler imaging

    Endogenous Bacterial Endophthalmitis Caused by Iliopsoas Abscess

    Get PDF
    A 79-year-old woman presented to our hospital with a 10-day history of gradually worsening binocular vision and severe backache. Further investigations revealed poor bilateral best-corrected visual acuities (BCVA), bilateral vitreous opacities, gray-white lesions scattered throughout the retina, and a left iliopsoas abscess on CT that later grew out methicillin-sensitive S. aureus. The abscess was drained and intravenous antibiotics were initiated, but the left eye additionally required intravitreal vancomycin. BCVA for both eyes normalized within 1 year. Intramuscular abscess should be considered as a possible primary lesion in cases of endogenous bacterial endophthalmitis

    Brown dwarf companions in binaries detected from the 2021 season high-cadence microlensing surveys

    Full text link
    As a part of the project aiming to build a homogeneous sample of binary-lens (2L1S) events containing brown-dwarf (BD) companions, we investigate the 2021 season microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. For this purpose, we first identify 2L1S events by conducting systematic analyses of anomalous lensing events. We then select candidate BD-companion events by applying the criterion that the mass ratio between the lens components is less than qth0.1q_{\rm th}\sim 0.1. From this procedure, we find four binary-lens events including KMT-2021-BLG-0588, KMT-2021-BLG-1110, KMT-2021-BLG-1643, and KMT-2021-BLG-1770, for which the estimated mass ratios are q0.10q\sim 0.10, 0.07, 0.08, and 0.15, respectively. The event KMT-2021-BLG-1770 is selected as a candidate despite the fact that the mass ratio is slightly greater than qthq_{\rm th} because the lens mass expected from the measured short time scale of the event, tE7.6t_{\rm E}\sim 7.6~days, is small. From the Bayesian analyses, we estimate that the primary and companion masses are (M1/M,M2/M)=(0.540.24+0.31,0.0530.023+0.031)(M_1/M_\odot, M_2/M_\odot)= (0.54^{+0.31}_{-0.24}, 0.053^{+0.031}_{-0.023}) for KMT-2021-BLG-0588L, (0.740.35+0.27,0.0550.026+0.020)(0.74^{+0.27}_{-0.35}, 0.055^{+0.020}_{-0.026}) for KMT-2021-BLG-1110L, (0.730.17+0.24,0.0610.014+0.020)(0.73^{+0.24}_{-0.17}, 0.061^{+0.020}_{-0.014}) for KMT-2021-BLG-1643L, and (0.130.07+0.18,0.0200.011+0.028)(0.13^{+0.18}_{-0.07}, 0.020^{+0.028}_{-0.011}) for KMT-2021-BLG-1770L. It is estimated that the probabilities of the lens companions being in the BD mass range are 82\%, 85\%, 91\%, and 59\% for the individual events. For confirming the BD nature of the lens companions found in this and previous works by directly imaging the lenses from future high-resolution adaptive-optics (AO) followup observations, we provide the lens-source separations expected in 2030, which is an approximate year of the first AO light on 30~m class telescopes.Comment: 11 pages, 10 tables, 8 figure

    KMT-2021-BLG-1150Lb: Microlensing planet detected through a densely covered planetary-caustic signal

    Full text link
    Recently, there have been reports of various types of degeneracies in the interpretation of planetary signals induced by planetary caustics. In this work, we check whether such degeneracies persist in the case of well-covered signals by analyzing the lensing event KMT-2021-BLG-1150, for which the light curve exhibits a densely and continuously covered short-term anomaly. In order to identify degenerate solutions, we thoroughly investigate the parameter space by conducting dense grid searches for the lensing parameters. We then check the severity of the degeneracy among the identified solutions. We identify a pair of planetary solutions resulting from the well-known inner-outer degeneracy, and find that interpreting the anomaly is not subject to any degeneracy other than the inner-outer degeneracy. The measured parameters of the planet separation (normalized to the Einstein radius) and mass ratio between the lens components are (s,q)in(1.297,1.10×103)(s, q)_{\rm in}\sim (1.297, 1.10\times 10^{-3}) for the inner solution and (s,q)out(1.242,1.15×103)(s, q)_{\rm out}\sim (1.242, 1.15\times 10^{-3}) for the outer solution. According to a Bayesian estimation, the lens is a planetary system consisting of a planet with a mass Mp=0.880.36+0.38 MJM_{\rm p}=0.88^{+0.38}_{-0.36}~M_{\rm J} and its host with a mass Mh=0.730.30+0.32 MM_{\rm h}=0.73^{+0.32}_{-0.30}~M_\odot lying toward the Galactic center at a distance DL=3.81.2+1.3D_{\rm L} =3.8^{+1.3}_{-1.2}~kpc. By conducting analyses using mock data sets prepared to mimic those obtained with data gaps and under various observational cadences, it is found that gaps in data can result in various degenerate solutions, while the observational cadence does not pose a serious degeneracy problem as long as the anomaly feature can be delineated.Comment: 9 pages, 8 figure

    KMT-2021-BLG-1547Lb: Giant microlensing planet detected through a signal deformed by source binarity

    Full text link
    We investigate the previous microlensing data collected by the KMTNet survey in search of anomalous events for which no precise interpretations of the anomalies have been suggested. From this investigation, we find that the anomaly in the lensing light curve of the event KMT-2021-BLG-1547 is approximately described by a binary-lens (2L1S) model with a lens possessing a giant planet, but the model leaves unexplained residuals. We investigate the origin of the residuals by testing more sophisticated models that include either an extra lens component (3L1S model) or an extra source star (2L2S model) to the 2L1S configuration of the lens system. From these analyses, we find that the residuals from the 2L1S model originate from the existence of a faint companion to the source. The 2L2S solution substantially reduces the residuals and improves the model fit by Δχ2=67.1\Delta\chi^2=67.1 with respect to the 2L1S solution. The 3L1S solution also improves the fit, but its fit is worse than that of the 2L2S solution by Δχ2=24.7\Delta\chi^2=24.7. According to the 2L2S solution, the lens of the event is a planetary system with planet and host masses (Mp/MJ,Mh/M)=(1.470.77+0.64,0.720.38+0.32)(M_{\rm p}/M_{\rm J}, M_{\rm h}/M_\odot)=\left( 1.47^{+0.64}_{-0.77}, 0.72^{+0.32}_{-0.38}\right) lying at a distance \D_{\rm L} =5.07^{+0.98}_{-1.50}~kpc, and the source is a binary composed of a subgiant primary of a late G or an early K spectral type and a main-sequence companion of a K spectral type. The event demonstrates the need of sophisticated modeling for unexplained anomalies for the construction of a complete microlensing planet sample.Comment: 9 pages, 4 tables, 7 figure

    KMT-2022-BLG-0440Lb: A New q<104q < 10^{-4} Microlensing Planet with the Central-Resonant Caustic Degeneracy Broken

    Full text link
    We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, q=0.75q = 0.75--1.00×1041.00 \times 10^{-4} at 1σ1\sigma. The binary-lens models with a resonant caustic and a brown-dwarf mass ratio are both excluded by Δχ2>70\Delta\chi^2 > 70. The binary-source model can fit the anomaly well but is rejected by the ``color argument'' on the second source. From Bayesian analyses, it is estimated that the host star is likely a K or M dwarf located in the Galactic disk, the planet probably has a Neptune-mass, and the projected planet-host separation is 1.90.7+0.61.9^{+0.6}_{-0.7} or 4.61.7+1.44.6^{+1.4}_{-1.7} au, subject to the close/wide degeneracy. This is the third q<104q < 10^{-4} planet from a high-magnification planetary signal (A65A \gtrsim 65). Together with another such planet, KMT-2021-BLG-0171Lb, the ongoing follow-up program for the KMTNet high-magnification events has demonstrated its ability in detecting high-magnification planetary signals for q<104q < 10^{-4} planets, which are challenging for the current microlensing surveys.Comment: MNRAS accepte

    Systematic KMTNet Planetary Anomaly Search. IX. Complete Sample of 2016 Prime-Field Planets

    Full text link
    As a part of the ``Systematic KMTNet Planetary Anomaly Search" series, we report five new planets (namely, OGLE-2016-BLG-1635Lb, MOA-2016-BLG-532Lb, KMT-2016-BLG-0625Lb, OGLE-2016-BLG-1850Lb, and KMT-2016-BLG-1751Lb) and one planet candidate (KMT-2016-BLG-1855), which were found by searching 20162016 KMTNet prime fields. These buriedburied planets show a wide range of masses from Earth--class to Super--Jupiter--class, and are located in both the disk and the bulge. The ultimate goal of this series is to build a complete planet sample. Because our work provides a complementary sample to other planet detection methods, which have different detection sensitivities, our complete sample will help us to obtain a better understanding of planet demographics in our Galaxy.Comment: 38 pages, 17 figures, 12 Tables, submitted to the AAS journa

    KMT-2023-BLG-1431Lb: A New q<104q < 10^{-4} Microlensing Planet from a Subtle Signature

    Full text link
    The current studies of microlensing planets are limited by small number statistics. Follow-up observations of high-magnification microlensing events can efficiently form a statistical planetary sample. Since 2020, the Korea Microlensing Telescope Network (KMTNet) and the Las Cumbres Observatory (LCO) global network have been conducting a follow-up program for high-magnification KMTNet events. Here, we report the detection and analysis of a microlensing planetary event, KMT-2023-BLG-1431, for which the subtle (0.05 magnitude) and short-lived (5 hours) planetary signature was characterized by the follow-up from KMTNet and LCO. A binary-lens single-source (2L1S) analysis reveals a planet/host mass ratio of q=(0.72±0.07)×104q = (0.72 \pm 0.07) \times 10^{-4}, and the single-lens binary-source (1L2S) model is excluded by Δχ2=80\Delta\chi^2 = 80. A Bayesian analysis using a Galactic model yields estimates of the host star mass of Mhost=0.570.29+0.33 MM_{\rm host} = 0.57^{+0.33}_{-0.29}~M_\odot, the planetary mass of Mplanet=13.56.8+8.1 MM_{\rm planet} = 13.5_{-6.8}^{+8.1}~M_{\oplus}, and the lens distance of DL=6.91.7+0.8D_{\rm L} = 6.9_{-1.7}^{+0.8} kpc. The projected planet-host separation of a=2.30.5+0.5a_\perp = 2.3_{-0.5}^{+0.5} au or a=3.20.8+0.7a_\perp = 3.2_{-0.8}^{+0.7}, subject to the close/wide degeneracy. We also find that without the follow-up data, the survey-only data cannot break the degeneracy of central/resonant caustics and the degeneracy of 2L1S/1L2S models, showing the importance of follow-up observations for current microlensing surveys.Comment: PASP submitted. arXiv admin note: text overlap with arXiv:2301.0677
    corecore