17 research outputs found

    Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: II. Dipole-dipole versus current-current correlations

    Full text link
    Based on Takayama-Lin-Liu-Maki model, analytical expressions for the third-harmonic generation, DC Kerr effect, DC-induced second harmonic optical Kerr effect, optical Kerr effect or intensity-dependent index of refraction and DC-electric-field-induced optical rectification are derived under the static current-current(J0J0J_0J_0) correlation for one-dimensional infinite chains. The results of hyperpolarizabilities under J0J0J_0J_0 correlation are then compared with those obtained using the dipole-dipole (DDDD) correlation. The comparison shows that the conventional J0J0J_0J_0 correlation, albeit quite successful for the linear case, is incorrect for studying the nonlinear optical properties of periodic systems.Comment: 11 pages, 5 figure

    Zero frequency divergence and gauge phase factor in the optical response theory

    Full text link
    The static current-current correlation leads to the definitional zero frequency divergence (ZFD) in the optical susceptibilities. Previous computations have shown nonequivalent results between two gauges (p⋅A{\bf p\cdot A} and E⋅r{\bf E \cdot r}) under the exact same unperturbed wave functions. We reveal that those problems are caused by the improper treatment of the time-dependent gauge phase factor in the optical response theory. The gauge phase factor, which is conventionally ignored by the theory, is important in solving ZFD and obtaining the equivalent results between these two gauges. The Hamiltonians with these two gauges are not necessary equivalent unless the gauge phase factor is properly considered in the wavefunctions. Both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of trans-polyacetylene serve as our illustrative examples to study the linear susceptibility χ(1)\chi^{(1)} through both current-current and dipole-dipole correlations. Previous improper results of the χ(1)\chi^{(1)} calculations and distribution functions with both gauges are discussed. The importance of gauge phase factor to solve the ZFD problem is emphasized based on SSH and TLM models. As a conclusion, the reason why dipole-dipole correlation favors over current-current correlation in the practical computations is explained.Comment: 17 pages, 7 figures, submitted to Phys. Rev.

    Analytical solutions to the third-harmonic generation in trans-polyacetylene: Application of dipole-dipole correlation on the single electron models

    Full text link
    The analytical solutions for the third-harmonic generation (THG) on infinite chains in both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of trans-polyacetylene are obtained through the scheme of dipole-dipole (DDDD) correlation. They are not equivalent to the results obtained through static current-current (J0J0J_0J_0) correlation or under polarization operator P^\hat{P}. The van Hove singularity disappears exactly in the analytical forms, showing that the experimentally observed two-photon absorption peak (TPA) in THG may not be directly explained by the single electron models.Comment: 10 pages, 4 figures, submitted to Phys. Rev.

    Infrared spectroscopy of small-molecule endofullerenes

    Full text link
    Hydrogen is one of the few molecules which has been incarcerated in the molecular cage of C60_{60} and forms endohedral supramolecular complex H2_2@C60_{60}. In this confinement hydrogen acquires new properties. Its translational motion becomes quantized and is correlated with its rotations. We applied infrared spectroscopy to study the dynamics of hydrogen isotopologs H2_2, D2_2 and HD incarcerated in C60_{60}. The translational and rotational modes appear as side bands to the hydrogen vibrational mode in the mid infrared part of the absorption spectrum. Because of the large mass difference of hydrogen and C60_{60} and the high symmetry of C60_{60} the problem is identical to a problem of a vibrating rotor moving in a three-dimensional spherical potential. The translational motion within the C60_{60} cavity breaks the inversion symmetry and induces optical activity of H2_2. We derive potential, rotational, vibrational and dipole moment parameters from the analysis of the infrared absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2_2@C60_{60}. The same parameters were used to predict H2_2 energies inside C70_{70}[Xu et al., J. Chem. Phys., {\bf 130}, 224306 (2009)]. We compare the predicted energies and the low temperature infrared absorption spectra of H2_2@C70_{70}.Comment: Updated author lis
    corecore