17 research outputs found

    Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China

    No full text
    Rapid urbanization has led to deteriorated wetland water quality, reduced biodiversity, and fragmented wetland landscapes, which seriously threaten the sustainable development of regional ecology. Based on land use data of Dongying City, Shandong Province, in 2020, this study selected the landscape disturbance degree and landscape fragility index to construct a landscape ecological risk evaluation model and to analyze the spatial distribution characteristics of landscape ecological risk in Dongying City in 2020. The MSPA-Conefor-MCR model was used to extract the ecological network of wetlands in Dongying City, and the topological structure indices were quantitatively analyzed. Combined with the actual situation within the study area, the source sites to be optimized were identified by risk zoning and source importance; the ecological resistance surface was modified using landscape ecological risk, and the ecological network was optimized by simulating edge increase in order to evaluate the robustness of the ecological network before and after optimization and to verify the edge increase effect. The results show that the ecological risk in Dongying is high, mainly distributed in the central region and extending to the northeast, southeast, southwest, and northwest. A total of 131 ecological source sites (6 core and 125 resting-stone source sites) and 180 ecological corridors were extracted, and the whole ecological network was found to be less stable and to have stronger network heterogeneity using a topological analysis. By simulating 11 additional edges, the robustness of the optimized ecological network was significantly improved. Optimizing the simulated-edge increase can enhance the smoothness of ecological energy flow, which can provide a scientific basis for the construction of the ecological security pattern of wetlands in Dongying City

    Study on the Relationship between Topological Characteristics of Vegetation Ecospatial Network and Carbon Sequestration Capacity in the Yellow River Basin, China

    No full text
    Achieving carbon neutrality is a necessary effort to rid humanity of a catastrophic climate and is a goal for China in the future. Ecological space plays an important role in the realization of carbon neutrality, but the relationship between the structure of vegetation ecological space and vegetation carbon sequestration capacity has been the focus of research. In this study, we extracted the base data from MODIS products and other remote sensing products, and then combined them with the MCR model to construct a vegetation ecospatial network in the Yellow River Basin in 2018. Afterward, we calculated the topological indicators of ecological nodes in the network and analyzed the relationship between the carbon sequestration capacity (net biome productivity) of ecological nodes and these topological indicators in combination with the Biome-BGC model. The results showed that there was a negative linear correlation between the betweenness centrality of forest nodes and their carbon sequestration capacity in the Yellow River Basin (p < 0.05, R2 = 0.59). On the other hand, there was a positive linear correlation between the clustering coefficient of grassland nodes and their carbon sequestration capacity (p < 0.01, R2 = 0.49). In addition, we briefly evaluated the vegetation ecospatial network in the Yellow River BASIN and suggested its optimization direction under the background of carbon neutrality in the future. Increasing the carbon sequestration capacity of vegetation through the construction of national ecological projects is one of the ways to achieve carbon neutrality, and this study provides a reference for the planning of future national ecological projects in the Yellow River Basin. Furthermore, this is also a case study of the application of remote sensing in vegetation carbon budgeting

    Study on the Relationship between Topological Characteristics of Vegetation Ecospatial Network and Carbon Sequestration Capacity in the Yellow River Basin, China

    No full text
    Achieving carbon neutrality is a necessary effort to rid humanity of a catastrophic climate and is a goal for China in the future. Ecological space plays an important role in the realization of carbon neutrality, but the relationship between the structure of vegetation ecological space and vegetation carbon sequestration capacity has been the focus of research. In this study, we extracted the base data from MODIS products and other remote sensing products, and then combined them with the MCR model to construct a vegetation ecospatial network in the Yellow River Basin in 2018. Afterward, we calculated the topological indicators of ecological nodes in the network and analyzed the relationship between the carbon sequestration capacity (net biome productivity) of ecological nodes and these topological indicators in combination with the Biome-BGC model. The results showed that there was a negative linear correlation between the betweenness centrality of forest nodes and their carbon sequestration capacity in the Yellow River Basin (p R2 = 0.59). On the other hand, there was a positive linear correlation between the clustering coefficient of grassland nodes and their carbon sequestration capacity (p R2 = 0.49). In addition, we briefly evaluated the vegetation ecospatial network in the Yellow River BASIN and suggested its optimization direction under the background of carbon neutrality in the future. Increasing the carbon sequestration capacity of vegetation through the construction of national ecological projects is one of the ways to achieve carbon neutrality, and this study provides a reference for the planning of future national ecological projects in the Yellow River Basin. Furthermore, this is also a case study of the application of remote sensing in vegetation carbon budgeting

    <i>Rosa davurica</i> Inhibited Allergic Mediators by Regulating Calcium and Histamine Signaling Pathways

    No full text
    Rosa davurica Pall. exhibits antioxidant, antiviral, and anti-inflammatory properties; however, its pharmacological mechanism in allergy is yet to be understood. This study confirmed the effects of R. davurica Pall. leaf extract (RLE) on allergy as a new promising material. To evaluate the therapeutic potential of RLE against allergy, we investigated the effects of RLE on the regulatory β-hexosaminidase, histamine, histidine decarboxylase (HDC), Ca2+ influx, nitric oxide (NO), and cytokines induced by lipopolysaccharide (LPS) and DNP-IgE/BSA in Raw 264.7 and RBL-2H3 cells. Furthermore, we examined the effects of RLE on the signaling pathways of mitogen-activated protein kinase (MAPK) and Ca2+ pathways. After stimulating Raw 264.7 cells with LPS, RLE reduced the release of inflammatory mediators, such as NO, cyclooxygenase (COX)-2, inducible nitric oxygen synthase (iNOS), interleukin (IL)-1β, -6, and tumor necrosis factor (TNF)-α. Also, RLE reduced the β-hexosaminidase, histamine, HDC, Ca2+ influx, Ca2+ pathways, and phosphorylation of MAPK in DNP-IgE/BSA-stimulated RBL-2H3 cells. Our studies indicated that RLE is a valuable ingredient for treating allergic diseases by regulating cytokine release from macrophages and mast cell degranulation. Consequently, these results suggested that RLE may serve as a possible alternative promising material for treating allergies

    Incorporating Temporal and Spatial Variations of Groundwater into the Construction of a Water-Based Ecological Network: A Case Study in Denko County

    No full text
    It is of great practical significance to construct a water-based ecological network in arid and semi-arid areas. The spatial distribution of water resources is one of the most important factors in determining the ecological stability of such areas. In this study, groundwater level trends were analyzed with a model called Empirical Mode Decomposition (EMD). The temporal and spatial evolution of groundwater depth data from 1990 to 2016 were analyzed. The surface water bodies were analyzed using a point pattern analysis method. Based on this, a water-based ecological network was constructed with a minimum cumulative resistance surface model. The study indicated that the trend lines for the groundwater tables of 17 wells could be divided into five types in Denko County. The landscape types that changed from a desert landscape to an oasis landscape had a positive impact on groundwater. Precipitation trend was related to the spatial distribution of the groundwater depth, and the spatial pattern of the water nodes was characterized by a small-scale highly aggregated distribution and a large-scale uniform distribution in Denko County. These results suggest that for the stability of arid and semi-arid ecological environments, the appropriate human intervention (such as construction of an artificial oasis) is of great significance. Based on the analysis of groundwater and surface water bodies, a water-based ecological network in Denko County, which consisted of 391 ecological sources and 7360 ecological corridors, was constructed in 2016. The water-based ecological network constructed in this study was more sustainable and stable, and also suitable for arid and semi-arid areas, which is of great practical significance and application value

    Anti-Photoaging Effect of Phaseolus angularis L. Extract on UVB-Exposed HaCaT Keratinocytes and Possibilities as Cosmetic Materials

    No full text
    Phaseolus angularis L. is widely cultivated and is considered a superfood because of its nutritious protein and starch contents. Nevertheless, P. angularis&rsquo;s effects on skin photoaging are unknown. The aim of this study was to research the effects of P. angularis seed extract (PASE) on photoaging in human keratinocytes (HaCaT) damaged by UVB radiation so as to find out whether PASE can be used as an effective anti-photoaging ingredient in cosmetic products. The antioxidant activities were assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2&prime;-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging, and reactive oxygen species (ROS) assays. Enzyme-linked immunosorbent assay (ELISA) analysis was used to determine the change in matrix metalloproteinase (MMP)-1, and MMP-3. The protein levels of mitogen-activated protein kinase (MAPK)/activator protein (AP)-1, transforming growth factor beta (TGF)-&beta;/suppressor of mothers against decapentaplegic (Smad), and NF-E2-related factor (Nrf)2/antioxidant response element (ARE) were measured by western blot. As a result, PASE increased DPPH and ABTS antioxidant activities in a dose-dependent manner. Additionally, PASE treatment (100 &micro;g/mL) significantly reverted the damage induced by UVB (125 mJ/cm2) irradiation by downregulating ROS, matrix metalloproteinase (MMP)-1, and MMP-3 secretion and expression and increasing procollagen type I production. To suppress MMP-1 and MMP-3 secretion, PASE significantly decreased UVB-induced p38 and JNK phosphorylation and phosphorylated c-Fos and c-Jun nuclear translocation. PASE promoted collagen I production by inhibiting UVB-induced TGF-&beta; activation and Smad7 overexpression; antioxidant properties also arose from the stimulation of the Nrf2-dependent expression of the antioxidant enzymes heme oxygenase (HO)-1 and quinone oxidoreductase (NQO)-1. Our data demonstrated that PASE has the potential to prevent ROS formation induced by UVB exposure by targeting specific pathways. Thus, PASE might be a potent anti-photoaging component to exploit in developing anti-aging products

    Anti-Photoaging Effect of <i>Phaseolus angularis</i> L. Extract on UVB-Exposed HaCaT Keratinocytes and Possibilities as Cosmetic Materials

    No full text
    Phaseolus angularis L. is widely cultivated and is considered a superfood because of its nutritious protein and starch contents. Nevertheless, P. angularis’s effects on skin photoaging are unknown. The aim of this study was to research the effects of P. angularis seed extract (PASE) on photoaging in human keratinocytes (HaCaT) damaged by UVB radiation so as to find out whether PASE can be used as an effective anti-photoaging ingredient in cosmetic products. The antioxidant activities were assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging, and reactive oxygen species (ROS) assays. Enzyme-linked immunosorbent assay (ELISA) analysis was used to determine the change in matrix metalloproteinase (MMP)-1, and MMP-3. The protein levels of mitogen-activated protein kinase (MAPK)/activator protein (AP)-1, transforming growth factor beta (TGF)-β/suppressor of mothers against decapentaplegic (Smad), and NF-E2-related factor (Nrf)2/antioxidant response element (ARE) were measured by western blot. As a result, PASE increased DPPH and ABTS antioxidant activities in a dose-dependent manner. Additionally, PASE treatment (100 µg/mL) significantly reverted the damage induced by UVB (125 mJ/cm2) irradiation by downregulating ROS, matrix metalloproteinase (MMP)-1, and MMP-3 secretion and expression and increasing procollagen type I production. To suppress MMP-1 and MMP-3 secretion, PASE significantly decreased UVB-induced p38 and JNK phosphorylation and phosphorylated c-Fos and c-Jun nuclear translocation. PASE promoted collagen I production by inhibiting UVB-induced TGF-β activation and Smad7 overexpression; antioxidant properties also arose from the stimulation of the Nrf2-dependent expression of the antioxidant enzymes heme oxygenase (HO)-1 and quinone oxidoreductase (NQO)-1. Our data demonstrated that PASE has the potential to prevent ROS formation induced by UVB exposure by targeting specific pathways. Thus, PASE might be a potent anti-photoaging component to exploit in developing anti-aging products

    Antiperiodontitis Effects of <i>Siegesbeckia glabrescens</i> In Vitro

    No full text
    Siegesbeckia glabrescens is generally grown in fields or roadsides in Korea and used for the treatment of inflammatory diseases. The effects of S. glabrescens on periodontitis are unknown. In this study, we determined the effects of an S. glabrescens 30% EtOH extract (SGE) on periodontitis and analyzed the antioxidant activity (DPPH, ABTS, and SOD), antimicrobial (disc diffusion, MIC, and MBC), inhibition of GTFs, biofilm formation, and the anti-inflammation of lipopolysaccharide from P. gingivalis (LPS-PG)-induced primary equine periodontal ligament fibroblasts (PDLFs). We report that SGE increased DPPH, ABTS, and SOD antioxidant activities in a dose-dependent manner. SGE caused a clear zone with a diameter of 15 mm or more against periodontal pathogens. SGE (2.50 mg/mL) inhibited GTFs and biofilm by 89.07% and 85.40%, respectively. SGE treatment (100 µg/mL) also significantly decreased the secretion of inflammatory mediators in sensitized PDLF, including cytokines and matrix metalloproteinase (MMP)-3, -8, -9, and -13. Overall, we confirmed that SGE had excellent antioxidant, antimicrobial, and anti-inflammatory effects against periodontal pathogens. These results suggest that it has the potential to develop as a prophylactic agent for periodontitis

    Antiphotoaging Effects of Damiana (Turnera diffusa) Leaves Extract via Regulation AP-1 and Nrf2/ARE Signaling Pathways

    No full text
    Damiana (Turnera diffusa), of the family Passifloraceae, has been widely studied for its pharmacological effects, especially for antioxidant and antibacterial actions. However, there are limited scientific findings describing its antiphotoaging effects on the skin. In the present study, the underlying molecular mechanisms of the protective effect of Damiana were investigated in keratinocytes (HaCaTs) and normal human dermal fibroblasts (HDFs) subject to UVB irradiation. The mRNA expression of matrix metalloproteinases (MMPs) and procollagen type I was determined by reverse transcription-polymerase chain reaction. The protein expression of antiphotoaging-related signaling molecules in the activator protein-1 (AP-1) and nuclear factor erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathways was assessed by Western blotting. We observed that Damiana blocked the upregulated production of reactive oxygen species induced in UVB-irradiated HaCaTs and HDFs in a dose-dependent manner. Treatment with Damiana also significantly ameliorated the mRNA expression of MMPs and procollagen type I. In addition, the phosphorylation level of c-Jun and c-Fos was also decreased through the attenuated expression of p-38, p-ERK, and p-JNK after treatment with Damiana. Furthermore, the treatment of cells with Damiana resulted in the inhibition of Smad-7 expression in the TGF-&beta;/Smad pathway and upregulated the expression of the Nrf2/ARE signaling pathway. Hence, the synthesis of procollagen type I, a precursor of collagen I, was promoted. Collectively, these results provide us with the novel insight that Damiana is a potential source of antiphotoaging compounds
    corecore