29 research outputs found

    Soil bacterial diversity is associated with human population density in urban greenspaces

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of American Chemical Society for personal use, not for redistribution. The definitive version was published in Environmental Science and Technology 52 (2018): 5115–5124, doi:10.1021/acs.est.7b06417.Urban greenspaces provide extensive ecosystem services, including pollutant remediation, water management, carbon maintenance, and nutrient cycling. However, while the urban soil microbiota underpin these services, we still have limited understanding of the factors that influence their distribution. We characterized soil bacterial communities from turf-grasses associated with urban parks, streets and residential sites across a major urban environment, including a gradient of human population density. Bacterial diversity was significantly positively correlated with the population density; and species diversity was greater in park and street soils, compared to residential soils. Population density and greenspace type also led to significant differences in the microbial community composition that was also significantly correlated with soil pH, moisture and texture. Co-occurrence network analysis revealed that microbial guilds in urban soils were well correlated. Abundant soil microbes in high density population areas had fewer interactions, while abundant bacteria in high moisture soils had more interactions. These results indicate the significant influence of changes in urban demographics and land-use on soil microbial communities. As urbanization is rapidly growing across the planet, it is important to improve our understanding of the consequences of urban zoning on the soil microbiota.This study is supported by the Earth Microbiome Project (http://www.earthmicrobiome.org/) and the China Scholarship Council (http://en.csc.edu.cn/).2019-04-0

    Milano–Torino Staging and Long-Term Survival in Chinese Patients with Amyotrophic Lateral Sclerosis

    No full text
    (1) Background: The aim of this longitudinal study was to evaluate the association between disease progression according to the Milano–Torino staging (MITOS) system and long-term survival in Chinese patients with amyotrophic lateral sclerosis (ALS). We also examined factors affecting MITOS progression. (2) Methods: Patients were enrolled and underwent follow-up at 6, 12, 18, and 24 months, and their demographic and clinical data, including the Milano–Torino stage, Amyotrophic Lateral Sclerosis Functional Rating Scale—Revised (ALSFRS-R) score and neuropsychiatric data, were evaluated. The sensitivity and specificity of predicting survival outcomes based on MITOS progression and ALSFRS-R score decline from baseline to 6 months were compared. The associations between MITOS progression from baseline to 6 months and survival outcome at 12, 18 and 24 months were examined, and factors associated with disease progression were evaluated with subgroup analyses. (3) Results: Among the 100 patients included, 74% were in stage 0 at baseline, and approximately 95% progressed to a higher stage of the MITOS system at 24 months. MITOS progression from baseline to 6 months and ALSFRS-R decline showed comparable value for predicting survival at 12, 18, and 24 months. MITOS progression from baseline to 6 months is strongly associated with death outcomes. Older age at onset and increased depression and anxiety scores may be related to disease progression. (4) Conclusions: MITOS progression during the early disease course could serve as a prognostic marker of long-term survival and may have utility in clinical trials. Age at onset and diagnosis and neuropsychiatric factors might be associated with disease progression

    A Long Noncoding RNA Perturbs the Circadian Rhythm of Hepatoma Cells to Facilitate Hepatocarcinogenesis

    Get PDF
    Clock circadian regulator (CLOCK)/brain and muscle arnt-like protein-1 (BMAL1) complex governs the regulation of circadian rhythm through triggering periodic alterations of gene expression. However, the underlying mechanism of circadian clock disruption in hepatocellular carcinoma (HCC) remains unclear. Here, we report that a long noncoding RNA (lncRNA), highly upregulated in liver cancer (HULC), contributes to the perturbations in circadian rhythm of hepatoma cells. Our observations showed that HULC was able to heighten the expression levels of CLOCK and its downstream circadian oscillators, such as period circadian clock 1 and cryptochrome circadian clock 1, in hepatoma cells. Strikingly, HULC altered the expression pattern and prolonged the periodic expression of CLOCK in hepatoma cells. Mechanistically, the complementary base pairing between HULC and the 5' untranslated region of CLOCK mRNA underlay the HULC-modulated expression of CLOCK, and the mutants in the complementary region failed to achieve the event. Moreover, immunohistochemistry staining and quantitative real-time polymerase chain reaction validated that the levels of CLOCK were elevated in HCC tissues, and the expression levels of HULC were positively associated with those of CLOCK in clinical HCC samples. In functional experiments, our data exhibited that CLOCK was implicated in the HULC-accelerated proliferation of hepatoma cells in vitro and in vivo. Taken together, our data show that an lncRNA, HULC, is responsible for the perturbations in circadian rhythm through upregulating circadian oscillator CLOCK in hepatoma cells, resulting in the promotion of hepatocarcinogenesis. Thus, our finding provides new insights into the mechanism by which lncRNA accelerates hepatocarcinogenesis through disturbing circadian rhythm of HCC

    The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review

    No full text
    Malignant tumors still pose serious threats to human health due to their high morbidity and mortality. Recurrence and metastasis are the most important factors affecting patient prognosis. Chemotherapeutic drugs and radiation used to treat these tumors mainly interfere with tumor metabolism, destroy DNA integrity, and inhibit protein synthesis. The upregulation of small ubiquitin-like modifier (SUMO) is a prevalent posttranslational modification (PTM) in various cancers and plays a critical role in tumor development. The dysregulation of SUMOylation can protect cancer cells from stresses exerted by external or internal stimuli. SUMOylation is a dynamic process finely regulated by SUMOylation enzymes and proteases to maintain a balance between SUMOylation and deSUMOylation. An increasing number of studies have reported that SUMOylation imbalance may contribute to cancer development, including metastasis, angiogenesis, invasion, and proliferation. High level of SUMOylation is required for cancer cells to survive internal or external stresses. Downregulation of SUMOylation may inhibit the development of cancer, making it an important potential clinical therapeutic target. Some studies have already begun to treat tumors by inhibiting the expression of SUMOylation family members, including SUMO E1 or E2. The tumor cells become more aggressive under internal and external stresses. The prevention of tumor development, metastasis, recurrence, and radiochemotherapy resistance by attenuating SUMOylation requires further exploration. This review focused on SUMOylation in tumor cells to discuss its effects on tumor suppressor proteins and oncoproteins as well as classical tumor pathways to identify new insights for cancer clinical therapy

    Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis

    No full text
    Abstract Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs

    14–3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer

    No full text
    Abstract Over the past decade, the role of the 14–3-3 protein has received increasing interest. Seven subtypes of 14–3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14–3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14–3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14–3-3 dimers, studies on 14–3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14–3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstrac

    Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor

    No full text
    Adipogenesis is the process through which preadipocytes differentiate into adipocytes. During this process, the preadipocytes cease to proliferate, begin to accumulate lipid droplets, and develop morphologic and biochemical characteristics of mature adipocytes. Mesenchymal stem cells (MSCs) are a type of adult stem cells known for their high plasticity and capacity to generate mesodermal and nonmesodermal tissues. Many mature cell types can be generated from MSCs, including adipocyte, osteocyte, and chondrocyte. The differentiation of stem cells into multiple mature phenotypes is at the basis for tissue regeneration and repair. Cancer stem cells (CSCs) play a very important role in tumor development and have the potential to differentiate into multiple cell lineages. Accumulating evidence has shown that cancer cells can be induced to differentiate into various benign cells, such as adipocytes, fibrocytes, osteoblast, by a variety of small molecular compounds, which may provide new strategies for cancer treatment. Recent studies have reported that tumor cells undergoing epithelial-to-mesenchymal transition can be induced to differentiate into adipocytes. In this review, molecular mechanisms, signal pathways, and the roles of various biological processes in adipose differentiation are summarized. Understanding the molecular mechanism of adipogenesis and adipose differentiation of cancer cells may contribute to cancer treatments that involve inducing differentiation into benign cells
    corecore