42 research outputs found

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    Semilinear mixed problems on Hilbert complexes and their numerical approximation

    Full text link
    Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281-354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold-Falk-Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error estimates in Section

    An existence theorem in the calculus of variations based on Sobolev's imbedding theorems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46175/1/205_2004_Article_BF00266572.pd

    Interior Regularity Estimates in High Conductivity Homogenization and Application

    Full text link
    In this paper, uniform pointwise regularity estimates for the solutions of conductivity equations are obtained in a unit conductivity medium reinforced by a epsilon-periodic lattice of highly conducting thin rods. The estimates are derived only at a distance epsilon^{1+tau} (for some tau>0) away from the fibres. This distance constraint is rather sharp since the gradients of the solutions are shown to be unbounded locally in L^p as soon as p>2. One key ingredient is the derivation in dimension two of regularity estimates to the solutions of the equations deduced from a Fourier series expansion with respect to the fibres direction, and weighted by the high-contrast conductivity. The dependence on powers of epsilon of these two-dimensional estimates is shown to be sharp. The initial motivation for this work comes from imaging, and enhanced resolution phenomena observed experimentally in the presence of micro-structures. We use these regularity estimates to characterize the signature of low volume fraction heterogeneities in the fibred reinforced medium assuming that the heterogeneities stay at a distance epsilon^{1+tau} away from the fibres

    Scheduling Intervals Using Independent Sets in Claw-Free Graphs

    Full text link

    Maximal strip recovery problem with gaps: hardness and approximation algorithms

    Get PDF
    Abstract. Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-overlapping strips (or synteny blocks). This aims at de ning a robust set of synteny blocks between di erent species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem δ-gap-MSR, where δ is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. Depending on the nature of the comparative maps (i.e., with or without duplicates), we show that δ-gap-MSR is NP-complete for any δ ≥ 1, and even APX-hard for any δ ≥ 2. We also provide two approximation algorithms, with ratio 1.8 for δ = 1, and ratio 4 for δ ≥ 2
    corecore