2 research outputs found

    Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites

    Get PDF
    Migratory animals are threatened by human-induced global change. However, little is known about how stopover habitat, essential for refuelling during migration, affects the population dynamics of migratory species. Using 20 years of continent-wide citizen science data, we assess population trends of ten shorebird taxa that refuel on Yellow Sea tidal mudflats, a threatened ecosystem that has shrunk by >65% in recent decades. Seven of the taxa declined at rates of up to 8% per year. Taxa with the greatest reliance on the Yellow Sea as a stopover site showed the greatest declines, whereas those that stop primarily in other regions had slowly declining or stable populations. Decline rate was unaffected by shared evolutionary history among taxa and was not predicted by migration distance, breeding range size, non-breeding location, generation time or body size. These results suggest that changes in stopover habitat can severely limit migratory populations

    The large-scale drivers of population declines in a long-distance migratory shorebird

    No full text
    Migratory species can travel tens of thousands of kilometers each year, spending different parts of their annual cycle in geographically distinct locations. Understanding the drivers of population change is vital for conserving migratory species, yet the challenge of collecting data over entire geographic ranges has hindered attempts to identify the processes leading to observed population changes. Here, we use remotely sensed environmental data and bird count data to investigate the factors driving variability in abundance in two subspecies of a long-distance migratory shorebird, the bar-tailed godwit Limosa lapponica. We compiled a spatially and temporally explicit dataset of three environmental variables to identify the conditions experienced by each subspecies in each stage of their annual cycle (breeding, non-breeding and staging). We used a Bayesian N-mixture model to analyze 18 years of monthly count data from 21 sites across Australia and New Zealand in relation to the remote sensing data. We found that the abundance of one subspecies L. l. menzbieri in their non-breeding range was related to climate conditions in breeding grounds, and detected sustained population declines between 1995 and 2012 in both subspecies (L. l. menzbieri, –6.7% and L. l. baueri, –2.1% year–1). To investigate the possible causes of the declines, we quantified changes in habitat extent at 22 migratory staging sites in the Yellow Sea, East Asia, over a 25-year period and found –1.7% and –1.2% year–1 loss of habitat at staging sites used by L. l. menzbieri and L. l baueri, respectively. Our results highlight the need to identify environmental and anthropogenic drivers of population change across all stages of migration to allow the formulation of effective conservation strategies across entire migratory ranges
    corecore