34 research outputs found
Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress
Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro.
In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research
Subnormal vitamin B12 concentrations and anaemia in older people: a systematic review
<p>Abstract</p> <p>Background</p> <p>Pernicious anaemia is undeniably associated with vitamin B12 deficiency, but the association between subnormal vitamin B12 concentrations and anaemia in older people is unclear. The aim of this systematic review was to evaluate the association between subnormal vitamin B12 concentrations and anaemia in older people.</p> <p>Methods</p> <p>Clinical queries for aetiology and treatment in bibliographic databases (PubMed [01/1949-10/2009]; EMBASE [01/1980-10/2009]) were used. Reference lists were checked for additional relevant studies. Observational studies (≥50 participants) and randomized placebo-controlled intervention trials (RCTs) were considered.</p> <p>Results</p> <p>25 studies met the inclusion criteria. Twenty-one observational cross-sectional studies (total number of participants n = 16185) showed inconsistent results. In one longitudinal observational study, low vitamin B12 concentrations were not associated with an increased risk of anaemia (total n = 423). The 3 RCTs (total n = 210) were well-designed and showed no effect of vitamin B12 supplementation on haemoglobin concentrations during follow-up in subjects with subnormal vitamin B12 concentrations at the start of the study. Due to large clinical and methodological heterogeneity, statistical pooling of data was not performed.</p> <p>Conclusions</p> <p>Evidence of a positive association between a subnormal serum vitamin B12 concentration and anaemia in older people is limited and inconclusive. Further well-designed studies are needed to determine whether subnormal vitamin B12 is a risk factor for anaemia in older people.</p
Algae acquire vitamin B12 through a symbiotic relationship with bacteria.
Vitamin B12 (cobalamin) was identified nearly 80 years ago as the anti-pernicious anaemia factor in liver, and its importance in human health and disease has resulted in much work on its uptake, cellular transport and utilization. Plants do not contain cobalamin because they have no cobalamin-dependent enzymes. Deficiencies are therefore common in strict vegetarians, and in the elderly, who are susceptible to an autoimmune disorder that prevents its efficient uptake. In contrast, many algae are rich in vitamin B12, with some species, such as Porphyra yezoensis (Nori), containing as much cobalamin as liver. Despite this, the role of the cofactor in algal metabolism remains unknown, as does the source of the vitamin for these organisms. A survey of 326 algal species revealed that 171 species require exogenous vitamin B12 for growth, implying that more than half of the algal kingdom are cobalamin auxotrophs. Here we show that the role of vitamin B12 in algal metabolism is primarily as a cofactor for vitamin B12-dependent methionine synthase, and that cobalamin auxotrophy has arisen numerous times throughout evolution, probably owing to the loss of the vitamin B12-independent form of the enzyme. The source of cobalamin seems to be bacteria, indicating an important and unsuspected symbiosis