141 research outputs found

    A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis

    Full text link
    We introduce a comprehensive analysis of multi-epoch stellar line-of-sight velocities to determine the intrinsic velocity dispersion of the ultrafaint satellites of the Milky Way. Our method includes a simultaneous Bayesian analysis of both membership probabilities and the contribution of binary orbital motion to the observed velocity dispersion within a 14-parameter likelihood. We apply our method to the Segue 1 dwarf galaxy and conclude that Segue 1 is a dark-matter-dominated galaxy at high probability with an intrinsic velocity dispersion of 3.7^{+1.4}_{-1.1} km/sec. The dark matter halo required to produce this dispersion must have an average density of 2.5^{+4.1}_{-1.9} solar mass/pc^3 within a sphere that encloses half the galaxy's stellar luminosity. This is the highest measured density of dark matter in the Local Group. Our results show that a significant fraction of the stars in Segue 1 may be binaries with the most probable mean period close to 10 years, but also consistent with the 180 year mean period seen in the solar vicinity at about 1 sigma. Despite this binary population, the possibility that Segue 1 is a bound star cluster with the observed velocity dispersion arising from the orbital motion of binary stars is disfavored by the multi-epoch stellar velocity data at greater than 99% C.L. Finally, our treatment yields a projected (two-dimensional) half-light radius for the stellar profile of Segue 1 of 28^{+5}_{-4} pc, in excellent agreement with photometric measurements.Comment: 15 pages, 19 figure

    A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy

    Get PDF
    We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint Milky Way satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars within 67 pc (10 arcmin, or 2.3 half-light radii) of the center of Segue 1 that have colors and magnitudes consistent with membership, down to a magnitude limit of r=21.7. Based on photometric, kinematic, and metallicity information, we identify 71 stars as probable Segue 1 members, including some as far out as 87 pc. After correcting for the influence of binary stars using repeated velocity measurements, we determine a velocity dispersion of 3.7^{+1.4}_{-1.1} km/s, with a corresponding mass within the half-light radius of 5.8^{+8.2}_{-3.1} x 10^5 Msun. The stellar kinematics of Segue 1 require very high mass-to-light ratios unless the system is far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed toward implausibly short periods. With a total luminosity less than that of a single bright red giant and a V-band mass-to-light ratio of 3400 Msun/Lsun, Segue 1 is the darkest galaxy currently known. We critically re-examine recent claims that Segue 1 is a tidally disrupting star cluster and that kinematic samples are contaminated by the Sagittarius stream. The extremely low metallicities ([Fe/H] < -3) of two Segue 1 stars and the large metallicity spread among the members demonstrate conclusively that Segue 1 is a dwarf galaxy, and we find no evidence in favor of tidal effects. We also show that contamination by the Sagittarius stream has been overestimated. Segue 1 has the highest measured dark matter density of any known galaxy and will therefore be a prime testing ground for dark matter physics and galaxy formation on small scales.Comment: 24 pages, 4 tables, 11 figures (10 in color). Submitted for publication in ApJ. V3 revised according to comments from the refere

    Impact of Cigarette Smoke Exposure on Innate Immunity: A Caenorhabditis elegans Model

    Get PDF
    BACKGROUND: Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and lung cancer. Respiratory bacterial infections have been shown to be involved in the development of COPD along with impaired airway innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo impact of cigarette smoke (CS) exclusively on host innate defense mechanisms, we took advantage of Caenorhabditis elegans (C. elegans), which has an innate immune system but lacks adaptive immune function. Pseudomonas aeruginosa (PA) clearance from intestines of C. elegans was dampened by CS. Microarray analysis identified 6 candidate genes with a 2-fold or greater reduction after CS exposure, that have a human orthologue, and that may participate in innate immunity. To confirm a role of CS-down-regulated genes in the innate immune response to PA, RNA interference (RNAi) by feeding was carried out in C. elegans to inhibit the gene of interest, followed by PA infection to determine if the gene affected innate immunity. Inhibition of lbp-7, which encodes a lipid binding protein, resulted in increased levels of intestinal PA. Primary human bronchial epithelial cells were shown to express mRNA of human Fatty Acid Binding Protein 5 (FABP-5), the human orthologue of lpb-7. Interestingly, FABP-5 mRNA levels from human smokers with COPD were significantly lower (p = 0.036) than those from smokers without COPD. Furthermore, FABP-5 mRNA levels were up-regulated (7-fold) after bacterial (i.e., Mycoplasma pneumoniae) infection in primary human bronchial epithelial cell culture (air-liquid interface culture). CONCLUSIONS: Our results suggest that the C. elegans model offers a novel in vivo approach to specifically study innate immune deficiencies resulting from exposure to cigarette smoke, and that results from the nematode may provide insight into human airway epithelial cell biology and cigarette smoke exposure

    Timing of detachment faulting in the Bullfrog Hills and Bare Mountain area, southwest Nevada: Inferences from 40Ar/39Ar, K-Ar, U-Pb and fission track thermochronology

    Get PDF
    Crustal extension in the Bullfrog Hills and Bare Mountain area of southwest Nevada is associated with movement along a regional detachment fault. Normal faulting in the upper plate and rapid cooling (denudation) of the lower plate were coeval with Miocene silicic volcanism and with west-northwest transport along the detachment fault. A west-northwest progression of tilting along upper plate normal faults is indicated by ages of the volcanic rocks in relation to angular unconformities. Near the breakaway, tilting in the upper plate occurred between 12.7 and 11.6 Ma, continued less strongly past 10.7 Ma, and was over by 8.2 Ma. Ten to 20 km west of the breakaway, tilting occurred between 10.7 and 10.33 Ma, continued less strongly after 10.33 Ma, and was over by 8.1 Ma. The cooling histories of the lower plate metamorphic rocks were determined by thermochronologic dating methods: K-Ar and Ar-40/(39)A on muscovite, biotite, and hornblende, Ar-40/(39)A on K-feldspar, U-Pb on apatite, zircon, and sphene, and fission track on apatite, zircon, and sphene. Lower plate rocks 10 km west of the breakaway cooled slowly from Early Cretaceous lower-amphibolite facies conditions through 350+/-50 degrees to 300+/-50 degrees C between 57 and 38 Ma, then cooled rapidly from 205+/-50 degrees to 120+/-5O degrees C between 12.6+/-1.6 and 11.1+/-1.9 Ma. Lower plate rocks 20 km west of the breakaway cooled slowly from Early Cretaceous upper-amphibolite facies conditions through 500+/-50 degrees C at 78-67 Ma, passed through 350+/-50 degrees to 300+/-50 degrees C between 16.3+/-0.4 and 10.5+/-0.3 Ma, then cooled rapidly from 285+/-50 degrees to 120+/-50 degrees C between 10.2 and 8.6 Ma. Upper plate tilting and rapid cooling (denudation) of the lower plate occurred simultaneously in the respective areas. The early slow-cooling part of the lower plate thermal histories was probably related to erosion at the Earth's surface, which stripped off about 9 km of material in 50 to 100 m.y. The results indicate an initial fault dip greater than or equal to 30 degrees and a 12 mm yr(-1) west-northwest migration of the locus of rapid tilting in the upper plate

    The North American tree-ring fire-scar network

    Get PDF
    Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America
    corecore