688 research outputs found

    Improved method for phase wraps reduction in profilometry

    Full text link
    In order to completely eliminate, or greatly reduce the number of phase wraps in 2D wrapped phase map, Gdeisat et al. proposed an algorithm, which uses shifting the spectrum towards the origin. But the spectrum can be shifted only by an integer number, meaning that the phase wraps reduction is often not optimal. In addition, Gdeisat's method will take much time to make the Fourier transform, inverse Fourier transform, select and shift the spectral components. In view of the above problems, we proposed an improved method for phase wraps elimination or reduction. First, the wrapped phase map is padded with zeros, the carrier frequency of the projected fringe is determined by high resolution, which can be used as the moving distance of the spectrum. And then realize frequency shift in spatial domain. So it not only can enable the spectrum to be shifted by a rational number when the carrier frequency is not an integer number, but also reduce the execution time. Finally, the experimental results demonstrated that the proposed method is feasible.Comment: 16 pages, 15 figures, 1 table. arXiv admin note: text overlap with arXiv:1604.0723

    One shot profilometry using iterative two-step temporal phase-unwrapping

    Full text link
    This paper reviews two techniques that have been recently published for 3D profilometry and proposes one shot profilometry using iterative two-step temporal phase-unwrapping by combining the composite fringe projection and the iterative two-step temporal phase unwrapping algorithm. In temporal phase unwrapping, many images with different frequency fringe pattern are needed to project which would take much time. In order to solve this problem, Ochoa proposed a phase unwrapping algorithm based on phase partitions using a composite fringe, which only needs projecting one composite fringe pattern with four kinds of frequency information to complete the process of 3D profilometry. However, we found that the fringe order determined through the construction of phase partitions tended to be imprecise. Recently, we proposed an iterative two-step temporal phase unwrapping algorithm, which can achieve high sensitivity and high precision shape measurement. But it needs multiple frames of fringe images which would take much time. In order to take into account both the speed and accuracy of 3D shape measurement, we get a new, and more accurate unwrapping method based on composite fringe pattern by combining these two techniques. This method not only retains the speed advantage of Ochoa's algorithm, but also greatly improves its measurement accuracy. Finally, the experimental evaluation is conducted to prove the validity of the proposed method, and the experimental results show that this method is feasible.Comment: 14 pages, 15 figure

    Flexural behavior of LVL made from Australian radiata pine

    Get PDF
    As a commonly used engineering wood in modern timber constructions, laminated veneer lumber (LVL), produced from small-diameter wood, short-dimension wood, or fast-growing wood, significantly enhances material properties to meet the mechanical and physical requirements in structural engineering. This study aims to investigate the feasibility of utilizing fast-growing Australian radiata pine to produce structural LVL, providing essential theoretical support for its application in civil engineering. The investigation focuses specifically on Australian radiata pine LVL (RP-LVL) and involves a systematic experimental study to assess the bending performance of RP-LVL under various bending directions and specimen sizes. The findings reveal that the edgewise bending strength of RP-LVL is comparatively lower than its flatwise bending strength. Nevertheless, RP-LVL exhibits superior bending strength compared to conventional glulam and dimensional lumber, rendering it an attractive and suitable building material for achieving enhanced bending performance in flexure members. Moreover, the study identifies significant influences of height and width on the bending strength of RP-LVL. Consequently, prediction method is proposed to calculate the bending strength of RP-LVL, considering these size influences. Importantly, the size influences on bending strength are quantified to provide a comprehensive evaluation of the bending capacity of RP-LVL flexure members

    A Novel Route for Preparation of Hollow Carbon Nanospheres Without Introducing Template

    Get PDF
    A newly developed route for the synthesis of hollow carbon nanospheres without introducing template under hydrothermal conditions was reported. Hollow carbon nanospheres with the diameter of about 100 nm were synthesized using alginate as reagent only. Many instruments were applied to characterize the morphologies and structures of carbon hollow nanospheres, such as XRD, TEM, and Raman spectroscopy. The possible formation and growth mechanism of carbon hollow spheres were discussed on the basis of the investigation of reaction influence factors, such as temperature, time, and content. The findings would be useful for the synthesis of more materials with hollow structure and for the potential use in many aspects. The loading of SnO2on the surface of carbon hollow spheres was processed, and its PL property was also characterized
    • …
    corecore