2 research outputs found

    Deficit of primitive compositions in binary asteroids and pairs

    Full text link
    Context. Small binary asteroid systems and pairs are thought to form through fission induced by spin up via the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. This process is expected to depend on their structural strength, hence composition. Aims. We aim to determine how taxonomic classes, used as a proxy for composition, distribute amongst binary asteroids and asteroid pairs compared to the general population. Methods. We compare the distribution of taxonomic classes of binary systems and pairs with that of a reference sample of asteroids. We build this sample by selecting asteroids to reproduce the orbital and size distribution of the binaries and pairs to minimize potential biases between samples. Results. A strong deficit of primitive compositions (C, B, P, D types) among binary asteroids and asteroid pairs is identified, as well as a strong excess of asteroids with mafic-silicate rich surface compositions (S, Q, V, A types). Conclusions. Amongst low mass, rapidly rotating asteroids, those with mafic-silicate rich compositions are more likely to form multiple asteroid systems than their primitive counterparts.Comment: 12 pages, 7 figures, last 5 pages are table

    Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense
    corecore