14 research outputs found

    From fruitflies to mammals: mechanisms of signalling via the Sonic hedgehog pathway in lung development

    Get PDF
    The hedgehog signalling pathway has been implicated in many different processes in fly and vertebrate development. It is now known that the hedgehog cascade is crucial for the patterning of the early respiratory system. Hedgehog signalling in the lung involves Gli transcription proteins, but their potential downstream target genes have yet to be identified. Bmp4 and Fgf10 have been shown to regulate lung branching morphogenesis but seem not to be targets of hedgehog signalling

    The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development

    Get PDF
    Recent loss-of-function studies in mice show that the transcription factor GATA6 is important for visceral endoderm differentiation. It is also expressed in early bronchial epithelium and the observation that this tissue does not receive any contribution from Gata6 double mutant embryonic stem (ES) cells in chimeric mice suggests that GATA6 may play a crucial role in lung development. The aim of this study was to determine the role of GATA6 in fetal pulmonary development. We show that Gata6 mRNA is expressed predominantly in the developing pulmonary endoderm and epithelium, but at E15.5 also in the pulmonary mesenchyme. Blocking or depleting GATA6 function results in diminished branching morphogenesis both in vitro and in vivo. TTF1 expression is unaltered in chimeric lungs whereas SPC and CC10 expression are attenuated in abnormally branched areas of chimeric lungs. Chimeras generated in a ROSA26 background show that endodermal cells in these abnormally branched areas are derived from Gata6 mutant ES cells, implicating that the defect is intrinsic to the endoderm. Taken together, these data demonstrate that GATA6 is not essential for endoderm specification, but is required for normal branching morphogenesis and late epithelial cell differentiation

    Overexpression of lunatic fringe does not affect epithelial cell differentiation in the developing mouse lung

    No full text
    The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (β-tubulin IV), nonciliated (CCSP), and distal epithelial cell (SP-C, T1α) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (α-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium

    Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs

    Get PDF
    Sonic Hedgehog (Shh)-deficient mice have a severe lung branching defect. Recent studies have shown that hedgehog signaling is involved in vascular development and it is possible that the diminished airway branching in Shh-deficient mice is due to abnormal pulmonary vasculature formation. Therefore, we investigated the role of Shh in pulmonary vascular development using Shh/Tie2lacZ compound mice, which exhibit endothelial cell-specific LacZ expression, and Pecam-1 immunohistochemistry. In E11.5-13.5 Shh-deficient mice, the pulmonary vascular bed is decreased, but appropriate to the decrease in airway branching. However, when E12.5 Shh-deficient lungs were cultured for 4-6 days, the vascular network deteriorated compared to wild-type lungs. The expression of vascular endothelial growth factor (Vegf) or its receptor Vegfr2 (KDR/Flk-1) was not different between E12.5-13.5 Shh-deficient and wild-type lungs. In contrast, angiopoietin-1 (Ang1), but not Ang2 or the angiopoietin receptor Tie2, mRNA expression was downregulated in E12.5-E13.5 lungs of Shh null mutants. Recombinant Ang1 alone was unable to restore in vitro branching morphogenesis in Shh-deficient lungs. Conversely, the angiogenic factor fibroblast growth factor (Fgf)-2 alone or in combination with Ang1, increased vascularization and tubular growth and branching of Shh-deficient lungs in vitro. The angiogenic factors did not overcome the reduced smooth muscle cell differentiation in the Shh null lungs. These data indicate that early vascular development, mediated by Vegf/Vegfr2 signaling proceeds normally in Shh-deficient mice, while later vascular development and stabilization of the primitive network mediated by the Ang/Tie2 signaling pathway are defective, resulting in an abnormal vascular network. Stimulation of vascularization with angiogenic factors such as Fgf2 and Ang1 partially restored tubular growth and branching in Shh-deficient lungs, suggesting that vascularization is required for branching morphogenesis

    Iroquois

    No full text

    Severe Adverse Reaction to Vemurafenib in a Pregnant Woman with Metastatic Melanoma

    No full text
    Targeted therapies have drastically changed the management of metastatic melanoma and have shown encouraging results on tumour progression but are also known for their high rates of adverse reactions. In general, targeted therapies are contraindicated during pregnancy due to concerns about teratogenesis. For the BRAF V600 inhibitor vemurafenib, the available literature about the effects on human pregnancy is limited to a single case report. In patients with metastatic melanoma that wish to continue their pregnancy, targeted therapies like vemurafenib offer the only possibility of improving maternal outcome. In this article, we report on a pregnant woman with metastatic melanoma who was treated with vemurafenib during pregnancy and experienced a fatal adverse reaction

    Iroquois genes influence proximo-distal morphogenesis during rat lung development

    No full text
    Lung development is a highly regulated process directed by mesenchymal-epithelial interactions, which coordinate the temporal and spatial expression of multiple regulatory factors required for proper lung formation. The Iroquois homeobox (Irx) genes have been implicated in the patterning and specification of several Drosophila and vertebrate organs, including the heart. Herein, we investigated whether the Irx genes play a role in lung morphogenesis. We found that Irx1-3 and Irx5 expression was confined to the branching lung epithelium, whereas Irx4 was not expressed in the developing lung. Antisense knockdown of all pulmonary Irx genes together dramatically decreased distal branching morphogenesis and increased distention of the proximal tubules in vitro, which was accompanied by a reduction in surfactant protein C-positive epithelial cells and an increase in β-tubulin IV and Clara cell secretory protein positive epithelial structures. Transmission electron microscopy confirmed the proximal phenotype of the epithelial structures. Furthermore, antisense Irx knockdown resulted in loss of lung mesenchyme and abnormal smooth muscle cell formation. Expression of fibroblast growth factors (FGF) 1, 7, and 10, FGF receptor 2, bone morphogenetic protein 4, and Sonic hedgehog (Shh) were not altered in lung explants treated with antisense Irx oligonucleotides. All four Irx genes were expressed in Shh- and Gli 2-deficient murine lungs. Collectively, these results suggest that Irx genes are involved in the regulation of proximo-distal morphogenesis of the developing lung but are likely not linked to the FGF, BMP, or Shh signaling pathways. Copyrigh

    Hypoxia-inducible factor-1 stimulates postnatal lung development but does not prevent o2-induced alveolar injury

    No full text
    This study investigated whether hypoxia-inducible factor (HIF)-1 influences postnatal vascularization and alveologenesis in mice and whether stable (constitutive-active) HIF could prevent hyperoxia-induced lung injury. We assessed postnatal vessel and alveolar formation in transgenic mice, expressing a stable, constitutive-active, HIF1a-subunit (HIF-1aDODD) in the distal lung epithelium. In addition,we compared lung function, histology, and morphometry of neonatal transgenic and wild-type mice subjected to hyperoxia. We found that postnatal lungs of HIF-1aDODDmice had a greater peripheral vessel density and displayed advanced alveolarization compared with control lungs. Stable HIF-1a expression was associated with increased postnatal expression of angiogenic factors, including vascular endothelial growth factor, angiopoietins 1 and 2, Tie2, and Ephrin B2 and B4. Hyperoxiaexposed neonatal HIF-1aDODD mice exhibited worse lung function but had similar histological and surfactant abnormalities compared with hyperoxia-exposed wild-type controls. In conclusion, expression of constitutive-active HIF-1a in the lung epithelium was associated with increased postnatal vessel growth via up-regulation of angiogenic factors. The increase in postnatal vasculature was accompanied by enhanced alveolar formation. However, stable HIF-1a expression in the distal lung did not prevent hyperoxia-induced lung injury in neonates but instead worsened lung function
    corecore