18 research outputs found

    The ReInforcement of adherence via self-monitoring app orchestrating biosignals and medication of RivaroXaban in patients with atrial fibrillation and co-morbidities: a study protocol for a randomized controlled trial (RIVOX-AF)

    Get PDF
    BackgroundBecause of the short half-life of non-vitamin K antagonist oral anticoagulants (NOACs), consistent drug adherence is crucial to maintain the effect of anticoagulants for stroke prevention in atrial fibrillation (AF). Considering the low adherence to NOACs in practice, we developed a mobile health platform that provides an alert for drug intake, visual confirmation of drug administration, and a list of medication intake history. This study aims to evaluate whether this smartphone app-based intervention will increase drug adherence compared with usual care in patients with AF requiring NOACs in a large population.MethodsThis prospective, randomized, open-label, multicenter trial (RIVOX-AF study) will include a total of 1,042 patients (521 patients in the intervention group and 521 patients in the control group) from 13 tertiary hospitals in South Korea. Patients with AF aged ≥19 years with one or more comorbidities, including heart failure, myocardial infarction, stable angina, hypertension, or diabetes mellitus, will be included in this study. Participants will be randomly assigned to either the intervention group (MEDI-app) or the conventional treatment group in a 1:1 ratio using a web-based randomization service. The intervention group will use a smartphone app that includes an alarm for drug intake, visual confirmation of drug administration through a camera check, and presentation of a list of medication intake history. The primary endpoint is adherence to rivaroxaban by pill count measurements at 12 and 24 weeks. The key secondary endpoints are clinical composite endpoints, including systemic embolic events, stroke, major bleeding requiring transfusion or hospitalization, or death during the 24 weeks of follow-up.DiscussionThis randomized controlled trial will investigate the feasibility and efficacy of smartphone apps and mobile health platforms in improving adherence to NOACs.Trial registrationThe study design has been registered in ClinicalTrial.gov (NCT05557123)

    A Deep Learning Model for Cell Growth Inhibition IC50 Prediction and Its Application for Gastric Cancer Patients

    No full text
    Heterogeneity in intratumoral cancers leads to discrepancies in drug responsiveness, due to diverse genomics profiles. Thus, prediction of drug responsiveness is critical in precision medicine. So far, in drug responsiveness prediction, drugs’ molecular “fingerprints”, along with mutation statuses, have not been considered. Here, we constructed a 1-dimensional convolution neural network model, DeepIC50, to predict three drug responsiveness classes, based on 27,756 features including mutation statuses and various drug molecular fingerprints. As a result, DeepIC50 showed better cell viability IC50 prediction accuracy in pan-cancer cell lines over two independent cancer cell line datasets. Gastric cancer (GC) is not only one of the lethal cancer types in East Asia, but also a heterogeneous cancer type. Currently approved targeted therapies in GC are only trastuzumab and ramucirumab. Responsive GC patients for the drugs are limited, and more drugs should be developed in GC. Due to the importance of GC, we applied DeepIC50 to a real GC patient dataset. Drug responsiveness prediction in the patient dataset by DeepIC50, when compared to the other models, were comparable to responsiveness observed in GC cell lines. DeepIC50 could possibly accurately predict drug responsiveness, to new compounds, in diverse cancer cell lines, in the drug discovery process

    Prevalence and clinical characteristics of primary aldosteronism in a tertiary-care center in Korea

    No full text
    Approximately 29% of Korean adults have hypertension; however, the prevalence of primary aldosteronism among the hypertensive population is largely unknown. The aim of our study was to evaluate the prevalence and clinical characteristics of primary aldosteronism in a tertiary-care center in Korea. We retrospectively analyzed 1173 patients with newly diagnosed or preexisting hypertension who were referred to our tertiary-care hospital between January 2013 and December 2018. Patients were screened for primary aldosteronism with the aldosterone-renin ratio and underwent a saline infusion test for diagnostic confirmation. Adrenal computed tomography and adrenal venous sampling were performed for subtype classification for primary aldosteronism. Among the 1173 patients (mean age, 51.8 years; women, 53.2%), 360 (30.7%) had positive screening-test results, of whom 71 (6.1%) were finally diagnosed with primary aldosteronism. Conclusive subtype differentiation was made in 55 patients, of whom 15 (27%) had an aldosterone-producing adenoma, 4 (7%) had unilateral adrenal hyperplasia, and 36 (66%) had bilateral adrenal hyperplasia. Patients with primary aldosteronism had a higher ambulatory blood pressure, left ventricular mass index, and urinary albumin-to-creatinine ratio than those without. Moreover, the primary aldosteronism group had a higher prevalence of left ventricular hypertrophy and albuminuria than the non-primary aldosteronism group. Primary aldosteronism may be more common (6.1%) among Korean patients with hypertension than generally recognized. Primary aldosteronism was associated with a higher degree and prevalence of target organ damage and a higher blood pressure level. Wide application of screening tests for primary aldosteronism may be beneficial in detecting this potentially curable cause of hypertension.N

    Hepatitis C Virus Core Protein Suppresses NF-κB Activation and Cyclooxygenase-2 Expression by Direct Interaction with IκB Kinase β

    No full text
    In addition to hepatocytes, hepatitis C virus (HCV) infects immune cells, including macrophages. However, little is known concerning the impact of HCV infection on cellular functions of these immune effector cells. Lipopolysaccharide (LPS) activates IκB kinase (IKK) signalsome and NF-κB, which leads to the expression of cyclooxygenase-2 (COX-2), which catalyzes production of prostaglandins, potent effectors on inflammation and possibly hepatitis. Here, we examined whether expression of HCV core interferes with IKK signalsome activity and COX-2 expression in activated macrophages. In reporter assays, HCV core inhibited NF-κB activation in RAW 264.7 and MH-S murine macrophage cell lines treated with bacterial LPS. HCV core inhibited IKK signalsome and IKKβ kinase activities induced by tumor necrosis factor alpha in HeLa cells and coexpressed IKKγ in 293 cells, respectively. HCV core was coprecipitated with IΚΚβ and prevented nuclear translocation of IKKβ. NF-κB activation by either LPS or overexpression of IKKβ was sufficient to induce robust expression of COX-2, which was markedly suppressed by ectopic expression of HCV core. Together, these data indicate that HCV core suppresses IKK signalsome activity, which blunts COX-2 expression in macrophages. Additional studies are necessary to determine whether interrupted COX-2 expression by HCV core contributes to HCV pathogenesis

    Inhibition of ANO1 by <i>Cis</i>- and <i>Trans</i>-Resveratrol and Their Anticancer Activity in Human Prostate Cancer PC-3 Cells

    No full text
    Anoctamin1 (ANO1), a calcium-activated chloride channel, is involved in the proliferation, migration, and invasion of various cancer cells including head and neck squamous cell carcinoma, lung cancer, and prostate cancer. Inhibition of ANO1 activity or downregulation of ANO1 expression in these cancer cells is known to exhibit anticancer effects. Resveratrol, a natural polyphenol abundant in wines, grapes, berries, soybeans, and peanuts, shows a wide variety of biological effects including anti-inflammatory, antioxidant, and anticancer activities. In this study, we investigated the effects of two stereoisomers of resveratrol on ANO1 activity and found that cis- and trans-resveratrol inhibited ANO1 activity with different potencies. Cis- and trans-resveratrol inhibited ANO1 channel activity with IC50 values of 10.6 and 102 μM, respectively, and had no significant effect on intracellular calcium signaling at 10 and 100 μM, respectively. In addition, cis-resveratrol downregulated mRNA and protein expression levels of ANO1 more potently than trans-resveratrol in PC-3 prostate cancer cells. Cis- and trans-resveratrol significantly reduced cell proliferation and cell migration in an ANO1-dependent manner, and both resveratrol isomers strongly increased caspase-3 activity, PARP cleavage, and apoptotic sub-G1 phase ratio in PC-3 cells. These results revealed that cis-resveratrol is a potent inhibitor of ANO1 and exhibits ANO1-dependent anticancer activity against human metastatic prostate cancer PC-3 cells

    The Pyridinic-to-Graphitic Conformational Change of Nitrogen of Graphitic Carbon Nitride on Lithium Coordination during Lithium Plating

    No full text
    The reversibility of lithium plating/stripping should be guaranteed in lithium metal batteries. Seriously polarized lithium growth during plating leads to the dendritic evolution of lithium metal due to the uneven current distribution on the electrically conductive surface. Artificial protective layers covering electrodes (e.g., polymer film on copper foil) have been used to narrow the gap of the current density between positions on the conductive surface. Herein, we incorporated an active ingredient to attract lithium ions into the dendrite-suppressing layer. Pyridinic nitrogen of graphitic carbon nitride (g-C3N4) served as the lithium ion affinity center. Conformation of the nitrogen was changed from pyridinic to graphitic in the presence of lithium ions, which confirms the coordination of lithium ion to the pyridinic nitrogen. Lithium metal was plated between the g-C3N4 layer and the copper current collector (or the lithium metal). The homogeneous lithium nucleation expected from the active role of the pyridinic nitrogen on regulating ionic pathways suppressed the dendritic growth of lithium metal and decreased the overpotential required for the initial metal nucleation. Due to the top-down ion flux regulation on the uppermost surface (or tip) of lithium metal, the reversibility of lithium plating/stripping was dramatically improved

    Lipopolysaccharide-dependent interaction between PU.1 and cJun determines production of lipocalin-type prostaglandin D synthase and prostaglandin D2 in macrophages

    No full text
    Previously, we reported that expression of lipocalin-prostaglandin D synthase (L-PGDS) is inducible in macrophages and protects from Pseudomonas pneumonia. Here, we investigated the mechanism by which L-PGDS gene expression is induced in macrophages. A promoter analysis of the murine L-PGDS promoter located a binding site of PU.1, a transcription factor essential for macrophage development and inflammatory gene expression. A chromatin immunoprecipitation assay showed that PU.1 bound to the cognate site in the endogenous L-PGDS promoter in response to LPS. Overexpression of PU.1, but not of PU.1S148A, a mutant inert to casein kinase II (CKII) or NF-κB-inducing kinase (NIK), induced L-PGDS in RAW 264.7 cells. Conversely, siRNA silencing of PU.1 expression blunted productions of L-PGDS and prostaglandin D2 (PGD2). LPS treatment induced formation of the complex of PU.1 and cJun on the PU.1 site, but inactivation of cJun by treatment with JNK or p38 kinase inhibitor abolished the complex, and suppressed PU.1 transcriptional activity for L-PGDS gene expression. Together, these results show that PU.1, activated by CKII or NIK, cooperates with MAPK-activated cJun to maximally induce L-PGDS expression in macrophages following LPS treatment, and suggest that PU.1 participates in innate immunity through the production of L-PGDS and PGD2
    corecore