44 research outputs found
Cross-Sector Review of Drivers and Available 3Rs Approaches for Acute Systemic Toxicity Testing
Acute systemic toxicity studies are carried out in many sectors in which synthetic chemicals are manufactured or used and are among the most criticized of all toxicology tests on both scientific and ethical grounds. A review of the drivers for acute toxicity testing within the pharmaceutical industry led to a paradigm shift whereby in vivo acute toxicity data are no longer routinely required in advance of human clinical trials. Based on this experience, the following review was undertaken to identify (1) regulatory and scientific drivers for acute toxicity testing in other industrial sectors, (2) activities aimed at replacing, reducing, or refining the use of animals, and (3) recommendations for future work in this area
Reconciling discrepancies in the source characterization of VOCs between emission inventories and receptor modeling
Emission inventory (EI) and receptor model (RM) are two of the three source apportionment (SA) methods recommended by Ministry of Environment of China and used widely to provide independent views on emission source identifications. How to interpret the mixed results they provide, however, were less studied. In this study, a cross-validation study was conducted in one of China's fast-developing and highly populated city cluster- the Pearl River Delta (PRD) region. By utilizing a highly resolved speciated regional EI and a region-wide gridded volatile organic compounds (VOCs) speciation measurement campaign, we elucidated underlying factors for discrepancies between EI and RM and proposed ways for their interpretations with the aim to achieve a scientifically plausible source identification. Results showed that numbers of species, temporal and spatial resolutions used for comparison, photochemical loss of reactive species, potential missing sources in EI and tracers used in RM were important factors contributed to the discrepancies. Ensuring the consensus of species used in EIs and RMs, utilizing a larger spatial coverage and longer time span, addressing the impacts of photochemical losses, and supplementing emissions from missing sources could help reconcile the discrepancies in VOC source characterizations acquired using both approaches. By leveraging the advantages and circumventing the disadvantages in both methods, the EI and RM could play synergistic roles to obtain robust SAs to improve air quality management practices