15 research outputs found

    Influence of wear and overwear on surface properties of etafilcon A contact lenses and adhesion of Pseudomonas aeruginosa

    Get PDF
    PURPOSE. To determine changes in physicochemical surface properties of contact tenses (CLs) during daily wear and effects of lens wear on adhesion of a Pseudomonas aeruginosa strain from a patient with CL-related keratitis.METHODS. Ten new CL wearers used ionic, etafilcon A lenses with 58% water on both eyes for approximately 10 hours each day during 10 and 50 days. All lenses were treated daily with an appropriate lens care solution. After the CLs were worn for 10 days (first pair of lenses) and 50 days (second pair, representing overwear), hydrophobicity by water contact angles, surface roughness by atomic force microscope, elemental surface composition by x-ray photoelectron spectroscopy (XPS), and adsorbed proteins by SDS-PAGE were determined on one lens. The lens from the contralateral eye was placed in a parallel plate flow chamber for bacterial adhesion after each time interval.RESULTS. Water contact angles on lenses changed from 45degrees on unused lenses to 61degrees +/- 25degrees after 10 days of wear and changed significantly (P &lt;0.05) to 27degrees +/- 14degrees after 50 days of wear. Surface roughness increased significantly (P &lt;0.05) from 4 +/- 2 nm (unused) to 10 +/- 7 nm after 50 days of wear. These changes were accompanied by adsorption of proteinaceous material, as evidenced by XPS and SDS-PAGE, demonstrating adsorption of lysozyme, tear lipocalin, and a 30-kDa protein. Initial bacterial adhesion to worn CLs was lower than to unworn CLs. Furthermore, detachment of adhering bacteria from worn lenses was easier than from unworn lenses. The changes observed in the physicochemical surface properties of the lenses after the CLs were worn for 50 days were accompanied by reports of discomfort by 6 of the 10 new CL wearers. Multiple regression analysis revealed that the most predictive variables for an effect on initial deposition after 10 days of wear were hydrophobicity, roughness, the presence of nitrogen-rich material, including the presence of a 30-kDa protein, and the presence of oxygen-rich material-that is, the type of oxygen adsorbed (O==C or O-C). After 50 days of wear, roughness and the presence of tear lipocalin were most predictive.CONCLUSIONS. This study demonstrates that the physicochemical surface properties changed after wear and overwear, whereas overwear of the lenses decreased initial adhesion of P. aeruginosa #3 under the present experimental conditions.</p

    Oral biofilm models for mechanical plaque removal

    Get PDF
    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a salivary pellicle for 2 h or grown after adhesion for 16 h, after which, their removal was evaluated. In a contact mode, no differences were observed between the manual, rotating, or sonic brushing; and removal was on average 39%, 84%, and 95% for Streptococcus mutans, Streptococcus oralis, and Actinomyces naeslundii, respectively, and 90% and 54% for the dual- and multi-species biofilms, respectively. However, in a non-contact mode, rotating and sonic brushes still removed considerable numbers of bacteria (24–40%), while the manual brush as a control (5–11%) did not. Single A. naeslundii and dual-species (A. naeslundii and S. oralis) biofilms were more difficult to remove after 16 h growth than after 2 h adhesion (on average, 62% and 93% for 16- and 2-h-old biofilms, respectively), while in contrast, biofilms grown from whole saliva were easier to remove (97% after 16 h and 54% after 2 h of growth). Considering the strong adhesion of dual-species biofilms and their easier more reproducible growth compared with biofilms grown from whole saliva, dual-species biofilms of A. naeslundii and S. oralis are suggested to be preferred for use in mechanical plaque removal studies in vitro

    Bond Strengthening in Oral Bacterial Adhesion to Salivary Conditioning Filmsâ–¿

    No full text
    Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers. All strains adhered in higher numbers to salivary conditioning films than to BSA coatings, and specific bacterial interactions with salivary conditioning films were accompanied by stronger initial adhesion forces. Bond strengthening occurred on a time scale of several tens of seconds and was slower for actinomyces than for streptococci. Nonspecific interactions between bacteria and BSA coatings strengthened twofold faster than their specific interactions with salivary conditioning films, likely because specific interactions require a closer approach of interacting surfaces with the removal of interfacial water and a more extensive rearrangement of surface structures. After bond strengthening, bacterial adhesion forces with a salivary conditioning film remained stronger than those with BSA coatings

    Generalized Relationship between Numbers of Bacteria and Their Viability in Biofilms â–¿

    No full text
    Bacterial biofilms are confined communities that are encapsulated in protective layers of extracellular polymeric substances. Microscopic evaluation of biofilms of diverse bacterial strains on various substrata reveals that, in general, the percentage of viable bacteria decreases with the total number of bacteria in a biofilm

    Soft tissue integration versus early biofilm formation on different dental implant materials

    No full text
    OBJECTIVE: Dental implants anchor in bone through a tight fit and osseo-integratable properties of the implant surfaces, while a protective soft tissue seal around the implants neck is needed to prevent bacterial destruction of the bone-implant interface. This tissue seal needs to form in the unsterile, oral environment. We aim to identify surface properties of dental implant materials (titanium, titanium-zirconium alloy and zirconium-oxides) that determine the outcome of this "race-for-the-surface" between human-gingival-fibroblasts and different supra-gingival bacterial strains. METHODS: Biofilms of three streptococcal species or a Staphylococcus aureus strain were grown in mono-cultures on the different implant materials in a parallel-plate-flow-chamber and their biovolume evaluated using confocal-scanning-laser-microscopy. Similarly, adhesion, spreading and growth of human-gingival-fibroblasts were evaluated. Co-culture experiments with bacteria and human-gingival-fibroblasts were carried out to evaluate tissue interaction with bacterially contaminated implant surfaces. Implant surfaces were characterized by their hydrophobicity, roughness and elemental composition. RESULTS: Biofilm formation occurred on all implant materials, and neither roughness nor hydrophobicity had a decisive influence on biofilm formation. Zirconium-oxide attracted most biofilm. All implant materials were covered by human-gingival-fibroblasts for 80-90% of their surface areas. Human-gingival-fibroblasts lost the race-for-the-surface against all bacterial strains on nearly all implant materials, except on the smoothest titanium variants. SIGNIFICANCE: Smooth titanium implant surfaces provide the best opportunities for a soft tissue seal to form on bacterially contaminated implant surfaces. This conclusion could only be reached in co-culture studies and coincides with the results from the few clinical studies carried out to this end

    Adhesion and viability of waterborne pathogens on p-DADMAC coatings

    No full text
    The attachment of waterborne pathogens onto surfaces can be increased by coating the surfaces with positive charge-enhancing polymers. In this paper, the increased efficacy of polydiallyldimethylammonium chloride (p-DADMAC) coatings on glass was evaluated in a parallel plate flow chamber with the use of waterborne pathogens (Raoultella terrigena, Escherichia coli, and Brevundimonas diminuta). p-DADMAC coatings strongly compensated the highly negative charges on the glass surface and even yielded a positively charged surface when applied from a 500 ppm solution. Whereas none of the strains adhered from water to glass due to electrostatic repulsion, R. terrigena and E. coli readily adhered in high numbers to p-DADMAC coated glass slides applied front 1, 100, or 500 ppm aqueous solutions. B. diminuta only adhered to a positively charged p-DADMAC coating applied from a 500 ppm solution. In addition, all p-DADMAC coatings indicated strong contact killing with the bacterial species used in this study by live/dead staining techniques. In summary, this paper demonstrates the potential of p-DADMAC coatings to strongly enhance bacterial adhesion. Moreover, once adhered, bacterial viability can be reduced by the positively charged ammonium groups in the coating

    Influence of wear and overwear on surface properties of Etafilcon A lenses and adhesion of Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 43

    No full text
    PURPOSE. To determine changes in physicochemical surface properties of contact lenses (CLs) during daily wear and effects of lens wear on adhesion of a Pseudomonas aeruginosa strain from a patient with CL-related keratitis. METHODS. Ten new CL wearers used ionic, etafilcon A lenses with 58% water on both eyes for approximately 10 hours each day during 10 and 50 days. All lenses were treated daily with an appropriate lens care solution. After the CLs were worn for 10 days (first pair of lenses) and 50 days (second pair, representing overwear), hydrophobicity by water contact angles, surface roughness by atomic force microscope, elemental surface composition by x-ray photoelectron spectroscopy (XPS), and adsorbed proteins by SDS-PAGE were determined on one lens. The lens from the contralateral eye was placed in a parallel plate flow chamber for bacterial adhesion after each time interval. RESULTS. Water contact angles on lenses changed from 45°on unused lenses to 61°Ϯ 25°after 10 days of wear and changed significantly (P Ͻ 0.05) to 27°Ϯ 14°after 50 days of wear. Surface roughness increased significantly (P Ͻ 0.05) from 4 Ϯ 2 nm (unused) to 10 Ϯ 7 nm after 50 days of wear. These changes were accompanied by adsorption of proteinaceous material, as evidenced by XPS and SDS-PAGE, demonstrating adsorption of lysozyme, tear lipocalin, and a 30-kDa protein. Initial bacterial adhesion to worn CLs was lower than to unworn CLs. Furthermore, detachment of adhering bacteria from worn lenses was easier than from unworn lenses. The changes observed in the physicochemical surface properties of the lenses after the CLs were worn for 50 days were accompanied by reports of discomfort by 6 of the 10 new CL wearers. Multiple regression analysis revealed that the most predictive variables for an effect on initial deposition after 10 days of wear were hydrophobicity, roughness, the presence of nitrogen-rich material, including the presence of a 30-kDa protein, and the presence of oxygen-rich material-that is, the type of oxygen adsorbed (OAC or OOC). After 50 days of wear, roughness and the presence of tear lipocalin were most predictive. CONCLUSIONS. This study demonstrates that the physicochemical surface properties changed after wear and overwear, whereas overwear of the lenses decreased initial adhesion of P. aeruginosa #3 under the present experimental conditions. (Invest Ophthalmol Vis Sci. 2002;43:3646 -3653

    Influence of wear and overwear on surface properties of etafilcon A contact lenses and adhesion of Pseudomonas aeruginosa

    No full text
    PURPOSE. To determine changes in physicochemical surface properties of contact tenses (CLs) during daily wear and effects of lens wear on adhesion of a Pseudomonas aeruginosa strain from a patient with CL-related keratitis. METHODS. Ten new CL wearers used ionic, etafilcon A lenses with 58% water on both eyes for approximately 10 hours each day during 10 and 50 days. All lenses were treated daily with an appropriate lens care solution. After the CLs were worn for 10 days (first pair of lenses) and 50 days (second pair, representing overwear), hydrophobicity by water contact angles, surface roughness by atomic force microscope, elemental surface composition by x-ray photoelectron spectroscopy (XPS), and adsorbed proteins by SDS-PAGE were determined on one lens. The lens from the contralateral eye was placed in a parallel plate flow chamber for bacterial adhesion after each time interval. RESULTS. Water contact angles on lenses changed from 45degrees on unused lenses to 61degrees +/- 25degrees after 10 days of wear and changed significantly (P <0.05) to 27degrees +/- 14degrees after 50 days of wear. Surface roughness increased significantly (P <0.05) from 4 +/- 2 nm (unused) to 10 +/- 7 nm after 50 days of wear. These changes were accompanied by adsorption of proteinaceous material, as evidenced by XPS and SDS-PAGE, demonstrating adsorption of lysozyme, tear lipocalin, and a 30-kDa protein. Initial bacterial adhesion to worn CLs was lower than to unworn CLs. Furthermore, detachment of adhering bacteria from worn lenses was easier than from unworn lenses. The changes observed in the physicochemical surface properties of the lenses after the CLs were worn for 50 days were accompanied by reports of discomfort by 6 of the 10 new CL wearers. Multiple regression analysis revealed that the most predictive variables for an effect on initial deposition after 10 days of wear were hydrophobicity, roughness, the presence of nitrogen-rich material, including the presence of a 30-kDa protein, and the presence of oxygen-rich material-that is, the type of oxygen adsorbed (O==C or O-C). After 50 days of wear, roughness and the presence of tear lipocalin were most predictive. CONCLUSIONS. This study demonstrates that the physicochemical surface properties changed after wear and overwear, whereas overwear of the lenses decreased initial adhesion of P. aeruginosa #3 under the present experimental conditions
    corecore