12 research outputs found

    Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime

    Full text link
    The recent observation of coherent backscattering (CBS) of light by atoms has emphasized the key role of the velocity spread and of the quantum internal structure of the atoms. Firstly, using highly resonant scatterers imposes very low temperatures of the disordered medium in order to keep the full contrast of the CBS interference. This criterion is usually achieved with standard laser cooling techniques. Secondly, a non trivial internal atomic structure leads to a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with a non trivial internal structure) and with Strontium (with the simplest possible internal structure) show this behaviour and confirm theoretical calculations

    Observation of coherent backscattering of light by cold atoms

    Full text link
    Coherent backscattering (CBS) of light waves by a random medium is a signature of interference effects in multiple scattering. This effect has been studied in many systems ranging from white paint to biological tissues. Recently, we have observed CBS from a sample of laser-cooled atoms, a scattering medium with interesting new properties. In this paper we discuss various effects, which have to be taken into account for a quantitative study of coherent backscattering of light by cold atoms.Comment: 25 pages LaTex2e, 17 figures, submitted to J. Opt. B: Quant. Semicl. Op

    Berry Phase of a Resonant State

    Get PDF
    We derive closed analytical expressions for the complex Berry phase of an open quantum system in a state which is a superposition of resonant states and evolves irreversibly due to the spontaneous decay of the metastable states. The codimension of an accidental degeneracy of resonances and the geometry of the energy hypersurfaces close to a crossing of resonances differ significantly from those of bound states. We discuss some of the consequences of these differences for the geometric phase factors, such as: Instead of a diabolical point singularity there is a continuous closed line of singularities formally equivalent to a continuous distribution of `magnetic' charge on a diabolical circle; different classes of topologically inequivalent non-trivial closed paths in parameter space, the topological invariant associated to the sum of the geometric phases, dilations of the wave function due to the imaginary part of the Berry phase and others.Comment: 28 pages Latex, three uuencoded postcript figure

    A longitudinal Stern-Gerlach interferometer : the “beaded” atom

    No full text
    The principle on an atomic interferometer based on the longitudinal Stern-Gerlach effect is given. Possible realizations using beams of metastable rare gas atoms or metastable hydrogen atoms are described. Some examples of phase-objects are discussed and some possible applications are suggested. The atoms coming out of the interferometer exhibit uncommon properties, particulary a permanent multiple localisation regarding the external atomic variables (“beaded” atoms).On donne le principe d'un interfĂ©romĂštre atomique dans lequel est utilisĂ© l'effet Stern-Gerlach longitudinal. Des rĂ©alisations possibles d'un tel interfĂ©romĂštre fonctionnant avec des atomes mĂ©tastables de gaz rares ou d'hydrogĂšne sont dĂ©crites. Quelques exemples d'objets de phase sont discutĂ©s, et quelques applications sont suggĂ©rĂ©es. A leur sortie de l'interfĂ©romĂštre, les atomes possĂšdent des propriĂ©tĂ©s inhabituelles, telles qu'une localisation multiple Ă  l'Ă©gard des variables externes (atomes “ en chapelet ”)

    Atomic quantum phase studies with a longitudinal Stern-Gerlach interferometer

    No full text
    A general description of atomic interferometers in terms of the scattering operator is given. The action of a longitudinal interferometer on an atom described by an incident polarized wavepacket is shown to be equivalent to a frame transformation, leading to a “beaded” atom. The special case of a pure longitudinal gradient of magnetic field and that of a spatially precessing field are examined. An experiment using metastable hydrogen atoms is presented and the results obtained in both situations mentioned above are discussed. Properties of beaded atoms produced by relatively strong fields (∌10\sim 10 G) are investigated by means of the intensity diagram of their electrically induced radiative decay.On donne une description gĂ©nĂ©rale des interfĂ©romĂštres atomiques en termes d'opĂ©rateur de diffusion. On montre que l'action d'un interfĂ©romĂštre longitudinal sur un atome reprĂ©sentĂ© par un paquet d'onde polarisĂ© se ramĂšne Ă  une transformation de rĂ©fĂ©rentiel. On examine le cas particulier d'un champ magnĂ©tique Ă  gradient longitudinal et celui d'un champ prĂ©cessant spatialement. Une rĂ©alisation expĂ©rimentale utilisant des atomes mĂ©tastables d'hydrogĂšne est ensuite prĂ©sentĂ©e et les rĂ©sultats obtenus dans les deux situations prĂ©cĂ©dentes sont discutĂ©s. On Ă©tudie enfin les propriĂ©tĂ©s des atomes “en chalelet” produits par des champs de quelques 10 G, Ă  partir du rayonnement induit par un champ Ă©lectrique

    Angular correlation measurements in a thermal beam of H∗^* (2s) atoms using a Stern-Gerlach atomic axicon

    No full text
    The effect of transverse magnetic gradients in Stern-Gerlach atom interferometry is to make interfere plane waves the momenta of which differ in their directions. As a result the contrast of the interference pattern produced by the longitudinal gradient is attenuated by an angular auto-correlation function in the momentum space. This effect is studied experimentally on a thermal beam of metastable H∗^* (2s) atoms, with a radial transverse gradient (atomic “axicon”).L'effet de gradients magnĂ©tiques transverses en interfĂ©romĂ©trie atomique de type Stern-Gerlach est de faire interfĂ©rer des ondes planes ayant initialement des vecteurs d'onde diffĂ©rant par leurs directions. Il en rĂ©sulte que, dans le signal d'interfĂ©rences induit par le gradient longitudinal, le contraste est attĂ©nuĂ© par une fonction d'autocorrĂ©lation angulaire. Cet effet est Ă©tudiĂ© expĂ©rimentalement sur un jet thermique d'atomes mĂ©tastables H∗^* (2s), dans le cas d'un gradient transverse radial (“axicon” atomique)
    corecore