51 research outputs found

    ANALYSIS OF MUSCLE STRENGTH CHARACTERISTICS FOR FLEXION AND EXTENSION OF THE KNEE JOINT IN FEMALE CYCLING ATHLETES

    Get PDF
    The purpose of this study was to analyze the characteristics of muscle strength that is involved in extension and flexion of the knee joint in female cyclists. The flexion and extension exercise of the knee joint is the main source of the muscle power used by the bicycle athlete. It is also one of the subjects which attracts a great deal of attention from scientific researchers and instructors of physical culture both inside and outside of China. For the present study, an advanced CYBEX6000 dynamic testing equipment were used to carry out a considerable amount of research on athletes in various sports events. Based on the published studies from national and international, a specific theory, analysis and exploration were made to the working condition of muscle flexion and extension of the knee joint from the bicycle athlete. The following conclusion was gotten from the comparison between experienced athletes engaged in swimming and boat racing. It was found that athletes engaged in different sports, have different working characteristics of muscle strength from the knee joint. For the experienced bicycle athletes, with the acceleration of rotating speed of the knee joint, the descending degree of the maximum extension muscle torque is much greater than that of the flexion muscle

    Effects of typhoons on surface seawater pCO(2) and air-sea CO2 fluxes in the Northern South China Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016258, doi:10.1029/2020JC016258.This study assessed the effects of typhoons on sea surface pCO2 and CO2 flux in the northern South China Sea (SCS). During the passage of three major typhoons from May to August 2013, sea surface pCO2, surface seawater temperature (SST), and other meteorological parameters were continuously measured on a moored buoy. Surface water in the region was a source of CO2 to the atmosphere with large variations ranging from hours to months. SST was the primary factor controlling the variation of surface pCO2 through most of the time period. Typhoons are seen to impact surface pCO2 in three steps: first by cooling, thus decreasing surface pCO2, and then by causing vertical mixing that brings up deep, high‐CO2 water, and lastly triggering net uptake of CO2 due to the nutrients brought up in this deep water. The typhoons of this study primarily impacted air‐sea CO2 flux via increasing wind speeds. The mean CO2 flux during a typhoon ranged from 3.6 to 5.4 times the pretyphoon mean flux. The magnitude of the CO2 flux during typhoons was strongly inversely correlated with the typhoon center distance. The effect of typhoons accounted for 22% of the total CO2 flux in the study period, during which typhoons occurred only 9% of the time. It was estimated that typhoons enhanced annual CO2 efflux by 23–56% in the northern SCS during the last decade. As such, tropical cyclones may play a large and increasingly important role in controlling CO2 fluxes in a warmer and stormier ocean of the future.This study was supported by the Marine Public Welfare Project of China (Grant 200905012), the Scientific Research Fund of the Second Institute of Oceanography of China (Grant JT1502), the Global Change and Air‐Sea Interaction project of China (Grant GASI‐03‐01‐02‐02), and the National Natural Sciences Foundation of China (Grant 91128212).2021-02-0

    Treatment of insomnia in myasthenia gravis—A prospective study on non-benzodiazepine hypnotics in the treatment of myasthenia gravis patients with insomnia

    Get PDF
    ObjectivesThis study aimed to evaluate the efficacy and safety of non-benzodiazepine hypnotics in the treatment of myasthenia gravis (MG) patients with insomnia.MethodsThis is a prospective longitudinal study. Outpatients who met the criteria for stable MG and insomnia diagnosis according to the International Classification of Sleep Disorders (third edition) were included in the study. They took a regular dose of non-benzodiazepine hypnotics (zolpidem 10 mg per night or zopiclone 7.5 mg per night) based on their own preferences. Patients received psychotherapy (including sleep health education) and were followed up for 4–5 weeks. Cases with lung diseases, respiratory disorders, or inappropriate use of hypnotic medications were excluded. The primary outcome is the difference in total Pittsburgh Sleep Quality Index (PSQI) score between baseline and the end of follow-up period. Secondary outcomes include the difference in Myasthenia Gravis Activities of Daily Living (MG-ADL) score, 7-item Generalized Anxiety Disorder Questionnaire (GAD-7), and the Patient Health Questionnaire-9 (PHQ-9) between baseline and the end of follow-up period and the safety of medication.ResultsA total of 75 MG patients with insomnia were included in this study. After 4–5 weeks of treatment, the total PSQI score and MG-ADL score were lower than baseline (p < 0.01). No patients had an increased MG-ADL score. The incidence rate of adverse events was 16.0% (12 cases), including dizziness (6 cases, 8.0%), drowsiness (3 cases, 4.0%), fatigue (2 cases, 2.7%), and nausea (1 case, 1.3%), all of which were mild. No patients had new onset breathing disorders.ConclusionNon-benzodiazepine hypnotics are safe and effective for stable MG patients who need insomnia treatment

    The complete mitochondrial genome of Aconurella prolixa (Lethierry 1885) (Hemiptera: Cicadellidae: Deltocephalinae: Chiasmini)

    No full text
    The complete mitochondrial genome of the widespread leafhopper species Aconurella prolixa (Hemiptera: Cicadellidae: Deltocephalinae: Chiasmini) was obtained via next-generation sequencing. This mitochondrial genome is 14,832 bp in length with the 37 classical eukaryotic mitochondrial genes and a control region. All 13 protein-coding genes (PCGs) are initiated with ATN, except ND5 uses TTG as the start codon, and terminate with TAA or TAG with the exception of COX2 and ND4 which use a single T residue as the stop codon. Twenty-one of the 22 transfer RNA (tRNAs) genes have the typical clover-leaf structure except for trnS1. Unlike some other species of deltocephalinae, no tRNA rearrangements were detected. The monophyly of Cicadellidae and Deltocephalinae, as well as the monophyly of Chiasmini, with a sister relationship between A. prolixa and (Exitianus indicus + Nephotettix cincticeps) is supported by Bayesian inference phylogenetic analyses based on 13 PCGs

    Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review

    No full text
    Alkaloids are nitrogen-containing heterocyclic compounds typically isolated from plants. They represent one of the most important types of natural products because of their large number and structural diversity and complexity. Based on their chemical core structures, alkaloids are classified as isoquinolines, quinolines, indoles, piperidine alkaloids, etc. In-depth analyses of alkaloids have revealed their antibacterial activities. To date, due to the widespread use of antibiotics, the problem of drug-resistant bacterial infections has been gradually increasing, which severely affects the clinical efficacy of antibacterial therapies and patient safety. Therefore, significant research efforts are focused on alkaloids because they represent a potentially new type of natural antibiotic with a wide antibacterial spectrum, rare adverse reactions, and a low tendency to produce drug resistance. Their main antibacterial mechanisms include inhibition of bacterial cell wall synthesis, change in cell membrane permeability, inhibition of bacterial metabolism, and inhibition of nucleic acid and protein synthesis. This article reviews recent reports about the chemical structures and the antibacterial activities and mechanisms of alkaloids. The purpose is to solve the problem of bacterial resistance and to provide a certain theoretical basis and research ideas for the development of new antibacterial drugs

    Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria turcica

    No full text
    It is urgent to develop highly efficient and eco-friendly antimicrobial agents for integrated control of phytopathogens. Silver nanoparticles (AgNPs) were synthesized by Ligustrum lucidum leaf extract. UV-vis spectrum showed that there was a strong absorbance at 438 nm. Transmission electron microscopy (TEM) images displayed that synthesized nanoparticles were near spherical with an average size of 13 nm. The antimicrobial effect of AgNPs was evaluated through methods of paper disk diffusion, colony growth, conidia germination, and in vitro inoculation. The 50% inhibition concentration (IC50) of AgNPs against Setosphaeria turcica was 170.20 μg/mL calculated by SPSS 13.0. In addition, it displayed a significant synergistic antifungal effect when AgNPs were combined with epoxiconazole at the ratios of 8 : 2 and 9 : 1. The results of this study provide a novel fungistat not only for comprehensive control of plant fungi but also for reducing chemical pesticides use and avoiding drug-resistant phytopathogen generation
    corecore