10 research outputs found

    Simulation Performance and Case Study of Extreme Events in Northwest China Using the BCC-CSM2 Model

    No full text
    The BCC-CSM2 model is the second generation of the Beijing Climate Center Climate System Model developed by the National Center of China Meteorological Administration. Using the outputs of two versions of the BCC-CSM2 model with different resolutions, namely: BCC-CSM2-MR and BCC-CSM2-HR, their performance in simulating the climate characteristics of Northwest China was compared. The BCC-CSM2-HR had a better ability to simulate the detailed distribution of the average temperature and precipitation in Northwest China, and could delineate the influence of the topography in detail. The extreme events in Northwest China were evaluated further using the BCC-CSM2-HR and the observation data from China Meteorological Data Center. The BCC-CSM2-HR provided a good simulation of the spatial distribution of extreme climate events in Northwest China, and the spatial distribution of TXx, TNx, TXn, and TNn in Northwest China show closer proximity to the observation than that of TX90p, TN90p, TX10p, and TN10p, even in the case of extreme heavy precipitation. This case study of the extreme weather events showed that the BCC-CSM2-HR model had the best simulation performance for extreme high temperature events in Northwest China, followed by extreme low temperature events, and had the worst simulation ability for extreme precipitation events

    Simulation Performance and Case Study of Extreme Events in Northwest China Using the BCC-CSM2 Model

    No full text
    The BCC-CSM2 model is the second generation of the Beijing Climate Center Climate System Model developed by the National Center of China Meteorological Administration. Using the outputs of two versions of the BCC-CSM2 model with different resolutions, namely: BCC-CSM2-MR and BCC-CSM2-HR, their performance in simulating the climate characteristics of Northwest China was compared. The BCC-CSM2-HR had a better ability to simulate the detailed distribution of the average temperature and precipitation in Northwest China, and could delineate the influence of the topography in detail. The extreme events in Northwest China were evaluated further using the BCC-CSM2-HR and the observation data from China Meteorological Data Center. The BCC-CSM2-HR provided a good simulation of the spatial distribution of extreme climate events in Northwest China, and the spatial distribution of TXx, TNx, TXn, and TNn in Northwest China show closer proximity to the observation than that of TX90p, TN90p, TX10p, and TN10p, even in the case of extreme heavy precipitation. This case study of the extreme weather events showed that the BCC-CSM2-HR model had the best simulation performance for extreme high temperature events in Northwest China, followed by extreme low temperature events, and had the worst simulation ability for extreme precipitation events

    Focusing high-squint and large-baseline one-stationary bistatic SAR data using keystone transform and enhanced nonlinear chirp scaling based on an ellipse model

    No full text
    Abstract This paper deals with the imaging problem for one-stationary bistatic synthetic aperture radar (BiSAR) with high-squint, large-baseline configuration. In this bistatic configuration, accurate focusing of BiSAR data is a difficult issue due to the relatively large range cell migration (RCM), severe range-azimuth coupling, and inherent azimuth-geometric variance. To circumvent these issues, an enhanced azimuth nonlinear chirp scaling (NLCS) algorithm based on an ellipse model is investigated in this paper. In the range processing, a method combining deramp operation and keystone transform (KT) is adopted to remove linear RCM completely and mitigate range-azimuth cross-coupling. In the azimuth focusing, an ellipse model is established to analyze and depict the characteristic of azimuth-variant Doppler phase. Based on the new model, an enhanced azimuth NLCS algorithm is derived to focus one-stationary BiSAR data. Simulating results exhibited at the end of this paper validate the effectiveness of the proposed algorithm

    High-throughput Sequencing-based Analysis of the Intestinal Microbiota of Broiler Chickens Fed Genetically Modified Rice Expressing Cry1Ac/Cry1Ab Chimeric Bacillus thuringiensis Protein

    No full text
    Many types of Bacillus thuringiensis (Bt)-crops are being grown worldwide, triggering concerns about their potential impact on humans and livestock. To ensure better yield and food safety in China, an attempt has been made to develop Bt-rice targeting a broad range of insects. We aimed to investigate whether feeding genetically modified rice expressing the Bt chimeric Cry1Ac/Cry1Ab protein has any effects on the intestinal microbiota of broilers. Broilers were fed either Bt-rice or its unmodified isogenic parent line for 42 days, and total DNA was isolated from cecum contents for high-throughput sequencing of the 16S rRNA gene. In total, 1,241,005 reads, assigned to 12 phyla, 31 families, and 48 genera were generated. No significant differences were observed in the relative abundance of organisms identified among the major phyla, families, and genera, except for two less abundant families, Thermoanaerobacteraceae and Peptostreptococcaceae, and two less abundant genera, Anaerotruncus and Gelria. The results were in agreement with those from culture-based analysis and Biolog EcoPlates. These results illustrate that feeding Bt-rice has no adverse effects on the broiler intestinal microbiota and provide sufficient support for the food safety of Bt-rice

    Modulating Ionic Transport and Interface Chemistry via Surface-Modified Silica Carrier in Nano Colloid Electrolyte for Stable Cycling of Li-Metal Batteries

    No full text
    Tailoring the Li+ microenvironment is crucial for achieving fast ionic transfer and a mechanically reinforced solid–electrolyte interphase (SEI), which administers the stable cycling of Li-metal batteries (LMBs). Apart from traditional salt/solvent compositional tuning, this study presents the simultaneous modulation of Li+ transport and SEI chemistry using a citric acid (CA)-modified silica-based colloidal electrolyte (C-SCE). CA-tethered silica (CA-SiO2) can render more active sites for attracting complex anions, leading to further dissociation of Li+ from the anions, resulting in a high Li+ transference number (≈0.75). Intermolecular hydrogen bonds between solvent molecules and CA-SiO2 and their migration also act as nano-carrier for delivering additives and anions toward the Li surface, reinforcing the SEI via the co-implantation of SiO2 and fluorinated components. Notably, C-SCE demonstrated Li dendrite suppression and improved cycling stability of LMBs compared with the CA-free SiO2 colloidal electrolyte, hinting that the surface properties of the nanoparticles have a huge impact on the dendrite-inhibiting role of nano colloidal electrolytes. © 2023 Wiley-VCH GmbH.FALS

    A Novel Blood???Based Colorectal Cancer Diagnostic Technology Using Electrical Detection of Colon Cancer Secreted Protein???2

    No full text
    Colorectal cancer (CRC) is the second-leading cause of cancer-related mortality worldwide, which may be effectively reduced by early screening. Colon cancer secreted protein-2 (CCSP-2) is a promising blood marker for CRC. An electric-field effect colorectal sensor (E-FECS), an ion-sensitive field-effect transistor under dual gate operation with nanostructure is developed, to quantify CCSP-2 directly from patient blood samples. The sensing performance of the E-FECS is verified in 7 controls and 7 CRC samples, and it is clinically validated on 30 controls, 30 advanced adenomas, and 81 CRC cases. The concentration of CCSP-2 is significantly higher in plasma samples from CRC and advanced adenoma compared with controls (both P < 0.001). Sensitivity and specificity for CRC versus controls are 44.4% and 86.7%, respectively (AUC of 0.67), and 43.3% and 86.7%, respectively, for advanced adenomas (AUC of 0.67). CCSP 2 detects a greater number of CRC cases than carcinoembryonic antigen does (45.6% vs 24.1%), and the combination of the two markers detects an even greater number of cases (53.2%). The E-FECS system successfully detects CCSP-2 in a wide range of samples including early stage cancers and advanced adenoma. CCSP-2 has potential for use as a blood-based biomarker for CRC
    corecore