11 research outputs found

    Mapping and validation of a novel major QTL for resistance to stripe rust in four wheat populations derived from landrace Qishanmai

    Get PDF
    Wheat yield has been constrained by stripe rust disease globally. A wheat landrace (Qishanmai, QSM) consistently showed lower stripe rust severities in multiple year studies than susceptible check varieties including Suwon11 (SW) at the adult plant stage. To detect QTL for reducing the severity in QSM, 1218 recombinant inbred lines (RILs) were developed from SW × QSM. QTL detection was conducted firstly using 112 RILs selected for similarity in pheno-morphological characters. The 112 RILs were assessed for stripe rust severity at the 2nd leaf, 6th leaf and flag leaf stages under field and greenhouse conditions, and genotyping was done primarily with a single nucleotide polymorphism (SNP) array. On the basis of these phenotypic and genotypic data, a major QTL (QYr.cau-1DL) was detected on chromosome 1D at the 6th leaf and flag leaf stages. Further mapping was conducted by genotyping 1218 RILs using new simple sequence repeat (SSR) markers, which were developed by referring to the sequences of the wheat line Chinese Spring (IWGSC RefSeq v1.0). QYr.cau-1DL was mapped within a 0.5 cM (5.2 Mb) interval delimited by the SSR markers 1D-320.58 and 1D-325.79. These markers were applied to select for QYr.cau-1DL by screening F2 or BC4F2 plants of the wheat crosses RL6058 × QSM, Lantian10 × QSM and Yannong21 × QSM. F2:3 or BC4F2:3 families derived from the selected plants were assessed for stripe rust resistance in the fields of two locations and in a greenhouse. Wheat plants carrying the resistant marker haplotype in homozygous state for QYr.cau-1DL showed lower stripe rust severities (by 44% to 48%) than plants lacking this QTL. The trial of RL6058 (a carrier of Yr18) × QSM also indicated that QYr.cau-1DL had larger effect than Yr18 on reducing severity; they acted synergistically, yielding an elevated level of stripe rust resistance

    Regional Anti-Corruption and CSR Disclosure in a Transition Economy: The Contingent Effects of Ownership and Political Connection

    No full text
    Based on the empirical data of China’s Shanghai and Shenzhen A-share market, this paper examined the impact of regional anti-corruption intensity on corporate social responsibility (CSR) disclosure. The results indicate that (1) regional anti-corruption intensity has a significant positive effect on firms’ CSR disclosure; (2) through the grouping test based on the ownership of firms, it was found that the positive effect of anti-corruption intensity on CSR disclosure in the sample of non-state-owned enterprises was more significant and positive than that of state-owned enterprises (SOEs); and (3) through the grouping test of whether or not the enterprises had political connections, the positive effect of regional anti-corruption intensity on CSR disclosure was stronger and more significant in firms with political connections (relative to those with no or weak political connections). This paper sheds light on the research into anti-corruption policies by linking government macro policy and enterprises’ micro social economic behaviors, and it provides empirical evidence for this linkage. This paper also contributes to organizational legitimacy theory and CSR theory by probing the impact of anti-corruption policies on firms’ CSR disclosure. At the same time, the effects of two contingency factors (ownership and political connection) also provide some practical implications to the relevant government departments by: (1) speeding up the market-oriented reform of state-owned enterprises including clarifying the boundaries of authority and responsibility between SOEs and the government, and conducting the de-administration of managers of SOEs; and (2) encouraging firms to focus on market competition and be more socially responsible, instead of speculating with political rents

    Reduction-sensitive N, N’-Bis(acryloyl) cystinamide-polymerized Nanohydrogel as a Potential Nanocarrier for Paclitaxel Delivery

    No full text
    Novel monomer, N, N’-bis(acryloyl) cystinamide (NBACA), was designed and synthesized with L-cystine as row material. By using this NBACA both as the monomer and crosslinker, reduction-sensitive nanohydrogel was prepared in ethanol via distillation–precipitation polymerization. The obtained nanohydrogel can provide a relatively hydrophobic environment and hydrogen-bonding sites inside the gel; therefore, it is suitable for loading hydrophobic drug. When paclitaxel that possess poor water-solubility was used as a model drug, the nanohydrogel represented a high drug-loading capacity, and dispersed well in aqueous solutions. Furthermore, the disulfide-group-containing nanohydrogel exhibited good reduction-sensitive drug-release behavior. The nanohydrogel biodegraded rapidly in a reducing environment, and released approximately 80% of the PTX within 24 h. Cytotoxicity assays showed that the PTX-loaded nanohydrogel exhibited high cytotoxicity against MCF-7 breast cancer cells, while blank nanohydrogels displayed a negligible cytotoxicity

    Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies

    No full text
    Abstract Acidic CO2 electroreduction (CO2R) using renewable electricity holds promise for high-efficiency generation of storable liquid chemicals with up to 100% CO2 utilization. However, the strong parasitic hydrogen evolution reaction (HER) limits its selectivity and energy efficiency (EE), especially at ampere-level current densities. Here we present that enhancing CO2R intermediate coverage on catalysts promotes CO2R and concurrently suppresses HER. We identified and engineered robust Cu6Sn5 catalysts with strong *OCHO affinity and weak *H binding, achieving 91% Faradaic efficiency (FE) for formic acid (FA) production at 1.2 A cm−2 and pH 1. Notably, the single-pass carbon efficiency reaches a new benchmark of 77.4% at 0.5 A cm−2 over 300 hours. In situ electrochemical Fourier-transform infrared spectroscopy revealed Cu6Sn5 enhances *OCHO coverage ~2.8× compared to Sn at pH 1. Using a cation-free, solid-state-electrolyte-based membrane-electrode-assembly, we produce 0.36 M pure FA at 88% FE over 130 hours with a marked full-cell EE of 37%
    corecore