206 research outputs found

    The Capacity Region of Information Theoretic Secure Aggregation with Uncoded Groupwise Keys

    Full text link
    This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates in the two rounds from the users to the server in the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely S users. The capacity region for the information-theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition S > K - U, where K is the number of total users and U is the designed minimum number of surviving users. In this paper we fully characterize of the the capacity region for this problem by proposing a new converse bound and an achievable scheme.Comment: 37 pages, 3 figure

    Surface stress evolution and cracks prevention of ingots during the upsetting process

    Get PDF
    In this research, surface axial stress and propagation of surface transverse cracks on large ingots during hot forging process was studied using finite element modeling. The simulation results show that surface axial stress changes from compressive to tensile during the upsetting process. Large ingots which need to be upset and stretched several times are easy to form cracks at anvil overlapping part during stretching process. These surface transverse cracks are crack source and may rapidly propagate under surface axial tensile stress during the upsetting process. The effect of material, temperature, height-diameter ratio of billet, deformation speed, and friction coefficient between anvil and billet on the changing of surface axial stress was investigated. The results show that critical transformation point of surface axial stress from compressive to tensile has an obvious relationship with drum shape of the billet. In order to eliminate the surface axial tensile stress and prevent propagation of surface transverse cracks, a slim waist forging process was proposed based on the surface stress analysis. A quantitative designing method of slim waist billet was established for guiding industrial production

    Single-cell RNA sequencing reveals distinct chondrocyte states in femoral cartilage under weight-bearing load in Rheumatoid arthritis

    Get PDF
    IntroductionRheumatoid arthritis (RA) is a common autoimmune joint disease, the pathogenesis of which is still unclear. Cartilage damage is one of the main manifestations of the disease. Chondrocytes are the main functional component of articular cartilage, which is relevant to disease progression. Mechanical loading affects the structure and function of articular cartilage and chondrocytes, but the effect of weight bearing on chondrocytes in rheumatoid arthritis is still unclear.MethodsIn this paper, single-cell RNA sequencing (scRNA-seq) was performed on collected cartilage from the weight-bearing region (Fb group) and non-weight-bearing region (Fnb group) of the femur, and the differences between the Fb and Fnb groups were analyzed by cell type annotation, pseudotime analysis, enrichment analysis, cell interactions, single-cell regulatory network inference and clustering (SCENIC) for each cell type. ResultsA total of 87,542 cells were analyzed and divided into 9 clusters. Six chondrocyte subpopulations were finally identified by cellular annotation, and two new chondrocyte subtypes were annotated as immune-associated chondrocytes. The presence of each chondrocyte subpopulation and its distribution were verified using immunohistochemical staining (IHC). In this study, the atlas of femoral cartilage in knee rheumatoid arthritis and 2 new immune-related chondrocytes were validated using scRNA-seq and IHC, and chondrocytes in the weight-bearing and non-weight-bearing regions of the femur were compared. There might be a process of macrophage polarization transition in MCs in response to mechanical loading, as in macrophages.ConclusionTwo new immune-associated chondrocytes were identified. MCs have contrasting functions in different regions, which might provide insight into the role of immune and mechanical loading on chondrocytes in the development of knee rheumatoid osteoarthritis

    Activation of Cytochrome C Peroxidase Function Through Coordinated Foldon Loop Dynamics upon Interaction with Anionic Lipids

    Get PDF
    Cardiolipin (CL) is a mitochondrial anionic lipid that plays important roles in the regulation and signaling of mitochondrial apoptosis. CL peroxidation catalyzed by the assembly of CL-cytochrome c (cyt c) complexes at the inner mitochondrial membrane is a critical checkpoint. The structural changes in the protein, associated with peroxidase activation by CL and different anionic lipids, are not known at a molecular level. To better understand these peripheral protein-lipid interactions, we compare how phosphatidylglycerol (PG) and CL lipids trigger cyt c peroxidase activation, and correlate functional differences to structural and motional changes in membrane-associated cyt c. Structural and motional studies of the bound protein are enabled by magic angle spinning solid state NMR spectroscopy, while lipid peroxidase activity is assayed by mass spectrometry. PG binding results in a surface-bound state that preserves a nativelike fold, which nonetheless allows for significant peroxidase activity, though at a lower level than binding its native substrate CL. Lipid-specific differences in peroxidase activation are found to correlate to corresponding differences in lipid-induced protein mobility, affecting specific protein segments. The dynamics of omega loops C and D are upregulated by CL binding, in a way that is remarkably controlled by the protein:lipid stoichiometry. In contrast to complete chemical denaturation, membrane-induced protein destabilization reflects a destabilization of select cyt c foldons, while the energetically most stable helices are preserved. Our studies illuminate the interplay of protein and lipid dynamics in the creation of lipid peroxidase-active proteolipid complexes implicated in early stages of mitochondrial apoptosis

    Isolation and identification of pathogens of Morchella sextelata bacterial disease

    Get PDF
    Morel mushroom (Morchella spp.) is a rare edible and medicinal fungus distributed worldwide. It is highly desired by the majority of consumers. Bacterial diseases have been commonly observed during artificial cultivation of Morchella sextelata. Bacterial pathogens spread rapidly and cause a wide range of infections, severely affecting the yield and quality of M. sextelata. In this study, two strains of bacterial pathogens, named M-B and M-5, were isolated, cultured, and purified from the tissues of the infected M. sextelata. Koch’s postulates were used to determine the pathogenicity of bacteria affecting M. sextelata, and the pathogens were identified through morphological observation, physiological and biochemical analyses, and 16S rRNA gene sequence analysis. Subsequently, the effect of temperature on the growth of pathogenic bacteria, the inhibitory effect of the bacteria on M. sextelata on plates, and the changes in mycelial morphology of M. sextelata mycelium were analyzed when M. sextelata mycelium was double-cultured with pathogenic bacteria on plates. The results revealed that M-B was Pseudomonas chlororaphis subsp. aureofaciens and M-5 was Bacillus subtilis. Strain M-B started to multiply at 10–15°C, and strain M-5 started at 15–20°C. On the plates, the pathogenic bacteria also produced significant inhibition of M. sextelata mycelium, and the observation of mycelial morphology under the scanning electron microscopy revealed that the inhibited mycelium underwent obvious drying and crumpling, and the healthy mycelium were more plump. Thus, this study clarified the pathogens, optimal growth environment, and characteristics of M. sextelata bacterial diseases, thereby providing valuable basic data for the disease prevention and control of Morchella production
    corecore