153 research outputs found
Fundamental Limits of Caching in Wireless D2D Networks
We consider a wireless Device-to-Device (D2D) network where communication is
restricted to be single-hop. Users make arbitrary requests from a finite
library of files and have pre-cached information on their devices, subject to a
per-node storage capacity constraint. A similar problem has already been
considered in an ``infrastructure'' setting, where all users receive a common
multicast (coded) message from a single omniscient server (e.g., a base station
having all the files in the library) through a shared bottleneck link. In this
work, we consider a D2D ``infrastructure-less'' version of the problem. We
propose a caching strategy based on deterministic assignment of subpackets of
the library files, and a coded delivery strategy where the users send linearly
coded messages to each other in order to collectively satisfy their demands. We
also consider a random caching strategy, which is more suitable to a fully
decentralized implementation. Under certain conditions, both approaches can
achieve the information theoretic outer bound within a constant multiplicative
factor. In our previous work, we showed that a caching D2D wireless network
with one-hop communication, random caching, and uncoded delivery, achieves the
same throughput scaling law of the infrastructure-based coded multicasting
scheme, in the regime of large number of users and files in the library. This
shows that the spatial reuse gain of the D2D network is order-equivalent to the
coded multicasting gain of single base station transmission. It is therefore
natural to ask whether these two gains are cumulative, i.e.,if a D2D network
with both local communication (spatial reuse) and coded multicasting can
provide an improved scaling law. Somewhat counterintuitively, we show that
these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information
Theory, This is the extended version of the conference (ITW) paper
arXiv:1304.585
- …