778 research outputs found

    A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality

    Get PDF
    Symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel nonconvex variable splitting method for solving SymNMF. The proposed algorithm is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem. Furthermore, it achieves a global sublinear convergence rate. We also show that the algorithm can be efficiently implemented in parallel. Further, sufficient conditions are provided which guarantee the global and local optimality of the obtained solutions. Extensive numerical results performed on both synthetic and real data sets suggest that the proposed algorithm converges quickly to a local minimum solution.Comment: IEEE Transactions on Signal Processing (to appear

    Multi-Agent Distributed Optimization via Inexact Consensus ADMM

    Get PDF
    Multi-agent distributed consensus optimization problems arise in many signal processing applications. Recently, the alternating direction method of multipliers (ADMM) has been used for solving this family of problems. ADMM based distributed optimization method is shown to have faster convergence rate compared with classic methods based on consensus subgradient, but can be computationally expensive, especially for problems with complicated structures or large dimensions. In this paper, we propose low-complexity algorithms that can reduce the overall computational cost of consensus ADMM by an order of magnitude for certain large-scale problems. Central to the proposed algorithms is the use of an inexact step for each ADMM update, which enables the agents to perform cheap computation at each iteration. Our convergence analyses show that the proposed methods converge well under some convexity assumptions. Numerical results show that the proposed algorithms offer considerably lower computational complexity than the standard ADMM based distributed optimization methods.Comment: submitted to IEEE Trans. Signal Processing; Revised April 2014 and August 201

    NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization

    Get PDF
    We study a stochastic and distributed algorithm for nonconvex problems whose objective consists of a sum of NN nonconvex Li/NL_i/N-smooth functions, plus a nonsmooth regularizer. The proposed NonconvEx primal-dual SpliTTing (NESTT) algorithm splits the problem into NN subproblems, and utilizes an augmented Lagrangian based primal-dual scheme to solve it in a distributed and stochastic manner. With a special non-uniform sampling, a version of NESTT achieves ϵ\epsilon-stationary solution using O((i=1NLi/N)2/ϵ)\mathcal{O}((\sum_{i=1}^N\sqrt{L_i/N})^2/\epsilon) gradient evaluations, which can be up to O(N)\mathcal{O}(N) times better than the (proximal) gradient descent methods. It also achieves Q-linear convergence rate for nonconvex 1\ell_1 penalized quadratic problems with polyhedral constraints. Further, we reveal a fundamental connection between primal-dual based methods and a few primal only methods such as IAG/SAG/SAGA.Comment: 35 pages, 2 figure

    Iteration Complexity Analysis of Block Coordinate Descent Methods

    Get PDF
    In this paper, we provide a unified iteration complexity analysis for a family of general block coordinate descent (BCD) methods, covering popular methods such as the block coordinate gradient descent (BCGD) and the block coordinate proximal gradient (BCPG), under various different coordinate update rules. We unify these algorithms under the so-called Block Successive Upper-bound Minimization (BSUM) framework, and show that for a broad class of multi-block nonsmooth convex problems, all algorithms covered by the BSUM framework achieve a global sublinear iteration complexity of O(1/r)O(1/r), where r is the iteration index. Moreover, for the case of block coordinate minimization (BCM) where each block is minimized exactly, we establish the sublinear convergence rate of O(1/r)O(1/r) without per block strong convexity assumption. Further, we show that when there are only two blocks of variables, a special BSUM algorithm with Gauss-Seidel rule can be accelerated to achieve an improved rate of O(1/r2)O(1/r^2)

    Asynchronous Distributed ADMM for Large-Scale Optimization- Part II: Linear Convergence Analysis and Numerical Performance

    Get PDF
    The alternating direction method of multipliers (ADMM) has been recognized as a versatile approach for solving modern large-scale machine learning and signal processing problems efficiently. When the data size and/or the problem dimension is large, a distributed version of ADMM can be used, which is capable of distributing the computation load and the data set to a network of computing nodes. Unfortunately, a direct synchronous implementation of such algorithm does not scale well with the problem size, as the algorithm speed is limited by the slowest computing nodes. To address this issue, in a companion paper, we have proposed an asynchronous distributed ADMM (AD-ADMM) and studied its worst-case convergence conditions. In this paper, we further the study by characterizing the conditions under which the AD-ADMM achieves linear convergence. Our conditions as well as the resulting linear rates reveal the impact that various algorithm parameters, network delay and network size have on the algorithm performance. To demonstrate the superior time efficiency of the proposed AD-ADMM, we test the AD-ADMM on a high-performance computer cluster by solving a large-scale logistic regression problem.Comment: submitted for publication, 28 page

    Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis

    Get PDF
    Aiming at solving large-scale learning problems, this paper studies distributed optimization methods based on the alternating direction method of multipliers (ADMM). By formulating the learning problem as a consensus problem, the ADMM can be used to solve the consensus problem in a fully parallel fashion over a computer network with a star topology. However, traditional synchronized computation does not scale well with the problem size, as the speed of the algorithm is limited by the slowest workers. This is particularly true in a heterogeneous network where the computing nodes experience different computation and communication delays. In this paper, we propose an asynchronous distributed ADMM (AD-AMM) which can effectively improve the time efficiency of distributed optimization. Our main interest lies in analyzing the convergence conditions of the AD-ADMM, under the popular partially asynchronous model, which is defined based on a maximum tolerable delay of the network. Specifically, by considering general and possibly non-convex cost functions, we show that the AD-ADMM is guaranteed to converge to the set of Karush-Kuhn-Tucker (KKT) points as long as the algorithm parameters are chosen appropriately according to the network delay. We further illustrate that the asynchrony of the ADMM has to be handled with care, as slightly modifying the implementation of the AD-ADMM can jeopardize the algorithm convergence, even under a standard convex setting.Comment: 37 page

    Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers

    Full text link
    In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multi-block problem into an equivalent two-block problem (either in the primal domain or in the dual domain) and then solves it using the standard two-block ADMM. In particular, we derive convergence results for this two-block ADMM approach to solve multi-block separable convex minimization problems, including an improved O(1/\epsilon) iteration complexity result. Moreover, we compare the numerical efficiency of this approach with the standard multi-block ADMM on several separable convex minimization problems which include basis pursuit, robust principal component analysis and latent variable Gaussian graphical model selection. The numerical results show that the multiple-block ADMM, although lacks theoretical convergence guarantees, typically outperforms two-block ADMMs

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms
    corecore