229 research outputs found

    Coherent heteronuclear spin dynamics in an ultracold spin-1 mixture

    Get PDF
    We report the observation of coherent heteronuclear spin dynamics driven by inter-species spin-spin interaction in an ultracold spinor mixture, which manifests as periodical and well correlated spin oscillations between two atomic species. In particular, we investigate the magnetic field dependence of the oscillations and find a resonance behavior which depends on {\em both} the linear and quadratic Zeeman effects and the spin-dependent interaction. We also demonstrate a unique knob for controlling the spin dynamics in the spinor mixture with species-dependent vector light shifts. Our finds are in agreement with theoretical simulations without any fitting parameters.Comment: 13 pages including the supplementary materia

    Data-driven spatial-temporal analysis of highway traffic volume considering weather and festival impacts

    Get PDF
    This paper aims to discover the relationships among the weather, holidays, and the traffic volume using multisource data from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) and to reveal the corresponding regional spatial–temporal traffic and migration patterns. Using accurate hourly weather and traffic volume data, this study examines the traffic volume from the origin to the destination county by considering traffic factors, weather factors, and temporal factors. A Random-effect regression model and a random forest model are established to analyze the above factors and identify the factors that contribute to the annual variation in traffic patterns. An RER + RF fusion prediction model based on ridge regression is proposed to predict the hourly traffic volume from origin to destination county, and is adopted in the spatial–temporal submodels. The results show that the impact of rainfall on traffic volume varies as the rainfall varies, and a rain-induced traffic pattern shift towards highway travel is found, which interacts with the negative effect of rainfall on highway traffic volumes. The Spring Festival holiday witnesses a V-shaped traffic volume curve during the study period. Some traffic pattern differences are also found in different spatial–temporal submodels. The RER + RF fusion model performs better in predicting in parent model and most of the spatial–temporal submodels, which validates the proposed model in predicting the traffic volume. The findings can provide transport agencies, urban planning agencies, and urban agglomeration travelers with valuable information for highway transport activity analysis considering the effects of weather and festival events

    Bus timetable optimization model in response to the diverse and uncertain requirements of passengers for travel comfort

    Get PDF
    Most existing public transit systems have a fixed dispatching and service mode, which cannot effectively allocate resources from the perspective of the interests of all participants, resulting in resource waste and dissatisfaction. Low passenger satisfaction leads to a considerable loss of bus passengers and further reduces the income of bus operators. This study develops an optimization model for bus schedules that considers vehicle types and offers two service levels based on heterogeneous passenger demands. In this process, passenger satisfaction, bus company income, and government subsidies are considered. A bilevel model is proposed with a lower-level passenger ride simulation model and an upper-level multiobjective optimization model to maximize the interests of bus companies, passengers, and the government. To verify the effectiveness of the proposed methodology, a real-world case from Guangzhou is presented and analyzed using the nondominated sorting genetic algorithm-II (NSGA-II), and the related Pareto front is obtained. The results show that the proposed bus operation system can effectively increase the benefits for bus companies, passengers, and the governmen

    Numerička studija izrađena pomoću ChemKin za rasplinjavanje vodene pare ugljene prašine i transformacije žive unutar rasplinjača s vodenom parom

    Get PDF
    Zero-emission coal (ZEC) technology has been actively studied recently. It aims to achieve zero emission of CO2 and other pollutants and the efficiency of this system can reach no less than 70%. Hydro-gasification of pulverized coal is a core process of ZEC. However, the mechanism of gasification and transformation of mercury speciation in the hydro-gasification is has not been understood precisely up until now. This restrains the ZEC’s commercialization. The purpose of this paper is to study the mechanism of hydro-gasification and mercury speciation transformation for coal in the gasifier with high temperature and pressure. Detailed chemical kinetics mechanism (CKM) has been proposed for hydro-gasification for pulverized coal in an entrained flow hydro-gasifier. The effects have been studied for different reaction conditions on hydro-gasification products and evolution of Hg in terms of the chemical reaction kinetics method. The CKM mechanism includes 130 elementary reactions and is solved with commercially available software, ChemKin. The calculation results are validated against the experimental data from literature and meaningful predictions are finally obtained. In addition, the chemical equilibrium calculation (CEC) is also used for predictions. Although the CEC method assumes all the reactions have reached chemical equilibrium, which is not the case in industrial reality, the calculation results are of value as reference.Tehnologija korištenja ugljena bez emisija (ZEC) se od nedavno aktivno proučava. Njezin cilj je postizanje nulte stope emisija CO2 te ostalih štetnih tvari dok efikasnost sustava mora biti minimalno 70%. Rasplinjavanje ugljene prašine vodenom parom je temeljni proces ZEC-a. Međutim, mehanizam rasplinjavanja i transformacije žive u rasplinjavanju vodenom parom još nije u potpunosti shvaćeno. To ograničava mogućnost komercijalne primjene ZEC-a. Cilj ovog rada je proučavanje mehanizama rasplinjavanja vodenom parom i transformacije žive za rasplinjavanje ugljena u rasplinjaču s visokim temperaturama i tlakom. Predloženi su detaljni kemijski kinetički mehanizmi (CKM) za rasplinjavanje ugljene prašine u fluidiziranom sloju sa zajedničkim tokom tvari. Proučeni su utjecaji raznih uvjeta pod kojim su se odvijale reakcije na produkte rasplinjavanja i evoluciju žive u uvjetima kemijskih reakcija kinetičke metode. CMK mehanizam sadrži 130 elementarnih reakcija i rješava se s komercijalno dostupnim programom, ChemKin. Rezultati simulacije se uspoređuju s eksperimentalnim iz literature te su konačno dobivena smislena predviđanja. Jednadžbe kemijske ravnoteže (CEC) su također korištene za predviđanja. Iako CEC metoda pretpostavlja da su sve reakcije postigle ravnotežu, što nije uvijek slučaj u industriji, rezultati tog proračuna mogu poslužiti kao referenca

    Dipolar Collisions of Ultracold Ground-state Bosonic Molecules

    Get PDF
    The dipolar collision between ultracold polar molecules is an important topic both by its own right from the fundamental point of view and for the successful exploration of many-body physics with strong and long-range dipolar interactions. Here, we report the investigation of collisions between ultracold ground-state sodium-rubidium molecules in electric fields with induced electric dipole moments as large as 0.7  \;D. We observe a step-wise enhancement of losses due to the coupling between different partial waves induced by the increasingly stronger anisotropic dipolar interactions. Varying the temperature of our sample, we find good agreement with theoretical loss rates assuming complex formation as the main loss process. Our results shed new light on the understanding of complex molecular collisions in the presence of strong dipolar interactions and also demonstrate the versatility of modifying molecular interactions with electric fields.Comment: 8 pages, 4 figures, PRX in pres

    The Early Events That Initiate β-Amyloid Aggregation in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is characterized by the development of amyloid plaques and neurofibrillary tangles (NFTs) consisting of aggregated β-amyloid (Aβ) and tau, respectively. The amyloid hypothesis has been the predominant framework for research in AD for over two decades. According to this hypothesis, the accumulation of Aβ in the brain is the primary factor initiating the pathogenesis of AD. However, it remains elusive what factors initiate Aβ aggregation. Studies demonstrate that AD has multiple causes, including genetic and environmental factors. Furthermore, genetic factors, many age-related events and pathological conditions such as diabetes, traumatic brain injury (TBI) and aberrant microbiota also affect the aggregation of Aβ. Here we provide an overview of the age-related early events and other pathological processes that precede Aβ aggregation

    Optical Orbital Angular Momentum Demultiplexing and Channel Equalization by Using Equalizing Dammann Vortex Grating

    Get PDF
    A novel equalizing Dammann vortex grating (EDVG) is proposed as orbital angular momentum (OAM) multiplexer to realize OAM signal demultiplexing and channel equalization. The EDVG is designed by suppressing odd diffraction orders and adjusting the grating structure. The light intensity of diffraction is subsequently distributed evenly in the diffraction orders, and the total diffraction efficiency can be improved from 53.22% to 82%. By using the EDVG, OAM demultiplexing and channel equalization can be realized. Numerical simulation shows that the bit error rate (BER) of each OAM channel can decrease to 10-4 when the bit SNR is 22 dB, and the intensity is distributed over the necessary order of diffraction evenly
    corecore