103 research outputs found

    Temporal similarity metrics for latent network reconstruction: The role of time-lag decay

    Full text link
    When investigating the spreading of a piece of information or the diffusion of an innovation, we often lack information on the underlying propagation network. Reconstructing the hidden propagation paths based on the observed diffusion process is a challenging problem which has recently attracted attention from diverse research fields. To address this reconstruction problem, based on static similarity metrics commonly used in the link prediction literature, we introduce new node-node temporal similarity metrics. The new metrics take as input the time-series of multiple independent spreading processes, based on the hypothesis that two nodes are more likely to be connected if they were often infected at similar points in time. This hypothesis is implemented by introducing a time-lag function which penalizes distant infection times. We find that the choice of this time-lag strongly affects the metrics' reconstruction accuracy, depending on the network's clustering coefficient and we provide an extensive comparative analysis of static and temporal similarity metrics for network reconstruction. Our findings shed new light on the notion of similarity between pairs of nodes in complex networks

    Explainable Recommendation with Personalized Review Retrieval and Aspect Learning

    Full text link
    Explainable recommendation is a technique that combines prediction and generation tasks to produce more persuasive results. Among these tasks, textual generation demands large amounts of data to achieve satisfactory accuracy. However, historical user reviews of items are often insufficient, making it challenging to ensure the precision of generated explanation text. To address this issue, we propose a novel model, ERRA (Explainable Recommendation by personalized Review retrieval and Aspect learning). With retrieval enhancement, ERRA can obtain additional information from the training sets. With this additional information, we can generate more accurate and informative explanations. Furthermore, to better capture users' preferences, we incorporate an aspect enhancement component into our model. By selecting the top-n aspects that users are most concerned about for different items, we can model user representation with more relevant details, making the explanation more persuasive. To verify the effectiveness of our model, extensive experiments on three datasets show that our model outperforms state-of-the-art baselines (for example, 3.4% improvement in prediction and 15.8% improvement in explanation for TripAdvisor)

    Interaction-Driven Active 3D Reconstruction with Object Interiors

    Full text link
    We introduce an active 3D reconstruction method which integrates visual perception, robot-object interaction, and 3D scanning to recover both the exterior and interior, i.e., unexposed, geometries of a target 3D object. Unlike other works in active vision which focus on optimizing camera viewpoints to better investigate the environment, the primary feature of our reconstruction is an analysis of the interactability of various parts of the target object and the ensuing part manipulation by a robot to enable scanning of occluded regions. As a result, an understanding of part articulations of the target object is obtained on top of complete geometry acquisition. Our method operates fully automatically by a Fetch robot with built-in RGBD sensors. It iterates between interaction analysis and interaction-driven reconstruction, scanning and reconstructing detected moveable parts one at a time, where both the articulated part detection and mesh reconstruction are carried out by neural networks. In the final step, all the remaining, non-articulated parts, including all the interior structures that had been exposed by prior part manipulations and subsequently scanned, are reconstructed to complete the acquisition. We demonstrate the performance of our method via qualitative and quantitative evaluation, ablation studies, comparisons to alternatives, as well as experiments in a real environment.Comment: Accepted to SIGGRAPH Asia 2023, project page at https://vcc.tech/research/2023/InterReco

    Popularity Ratio Maximization: Surpassing Competitors through Influence Propagation

    Full text link
    In this paper, we present an algorithmic study on how to surpass competitors in popularity by strategic promotions in social networks. We first propose a novel model, in which we integrate the Preferential Attachment (PA) model for popularity growth with the Independent Cascade (IC) model for influence propagation in social networks called PA-IC model. In PA-IC, a popular item and a novice item grab shares of popularity from the natural popularity growth via the PA model, while the novice item tries to gain extra popularity via influence cascade in a social network. The {\em popularity ratio} is defined as the ratio of the popularity measure between the novice item and the popular item. We formulate {\em Popularity Ratio Maximization (PRM)} as the problem of selecting seeds in multiple rounds to maximize the popularity ratio in the end. We analyze the popularity ratio and show that it is monotone but not submodular. To provide an effective solution, we devise a surrogate objective function and show that empirically it is very close to the original objective function while theoretically, it is monotone and submodular. We design two efficient algorithms, one for the overlapping influence and non-overlapping seeds (across rounds) setting and the other for the non-overlapping influence and overlapping seed setting, and further discuss how to deal with other models and problem variants. Our empirical evaluation further demonstrates that the proposed PRM-IMM method consistently achieves the best popularity promotion compared to other methods. Our theoretical and empirical analyses shed light on the interplay between influence maximization and preferential attachment in social networks.Comment: 22 pages, 8 figures, to be appear SIGMOD 202

    Influence of EOM sideband modulation noise on space-borne gravitational wave detection

    Full text link
    Clock noise is one of the dominant noises in the space-borne gravitational wave (GW) detection. To suppress this noise, the clock noise-calibrated time-delay-interferometry (TDI) technique is proposed. In this technique, an inter-spacecraft clock tone transfer chain is necessary to obtain the comparison information of the clock noises in two spacecraft, during which an electro-optic-modulator (EOM) is critical and used to modulate the clock noise to the laser phase. Since the EOM sideband modulation process introduces modulation noise, it is significant to put forward the corresponding requirements and assess whether the commercial EOM meets. In this work, based on the typical Michelson TDI algorithm and the fundamental noise requirement of GW detectors, the analytic expression of the modulation noise requirement is strictly derived, which relax the component indicator need compared to the existing commonly used rough assessments. Furthermore, a commercial EOM (iXblue-NIR-10 GHz) is tested, and the experimental results show that it can meet the requirement of the typical GW detection mission LISA in whole scientific bandwidth by taking the optimal combination of the data stream. Even when the displacement measurement accuracy of LISA is improved to 1 pm/ Hz1/2\mathrm{Hz^{1/2}} in the future, it still meets the demand
    corecore