156 research outputs found
The Analysis of the Causes of Willyâs Death in Arthur Millerâs Death of a Salesman
Death of a Salesman is a classic tragic work in contemporary America. It discusses some social factors in Willy Lomanâs death, such as the influence of the American Dream and the Great Depression. It also makes a detailed study on the flaws in the character of Willy Loman, some of which contribute to his own death, such as his misguided social values and his twisted relationship with his family. The paper aims at a further study on Willy Lomanâs death and to put forward the authorâs view on various causes of his death. Then it concludes that Willyâs death is the result of American society and his own character defect
Alzheimer's Disease Diagnosis Using Landmark-Based Features From Longitudinal Structural MR Images
Structural magnetic resonance imaging (MRI) has been proven to be an effective tool for Alzheimerâs disease (AD) diagnosis. While conventional MRI-based AD diagnosis typically uses images acquired at a single time point, a longitudinal study is more sensitive in detecting early pathological changes of AD, making it more favorable for accurate diagnosis. In general, there are two challenges faced in MRI-based diagnosis. First, extracting features from structural MR images requires time-consuming nonlinear registration and tissue segmentation, whereas the longitudinal study with involvement of more scans further exacerbates the computational costs. Moreover, the inconsistent longitudinal scans (i.e., different scanning time points and also the total number of scans) hinder extraction of unified feature representations in longitudinal studies. In this paper, we propose a landmark-based feature extraction method for AD diagnosis using longitudinal structural MR images, which does not require nonlinear registration or tissue segmentation in the application stage and is also robust to inconsistencies among longitudinal scans. Specifically, 1) the discriminative landmarks are first automatically discovered from the whole brain using training images, and then efficiently localized using a fast landmark detection method for testing images, without the involvement of any nonlinear registration and tissue segmentation; 2) high-level statistical spatial features and contextual longitudinal features are further extracted based on those detected landmarks, which can characterize spatial structural abnormalities and longitudinal landmark variations. Using these spatial and longitudinal features, a linear support vector machine (SVM) is finally adopted to distinguish AD subjects or mild cognitive impairment (MCI) subjects from healthy controls (HCs). Experimental results on the ADNI database demonstrate the superior performance and efficiency of the proposed method, with classification accuracies of 88.30% for AD vs. HC and 79.02% for MCI vs. HC, respectively
Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior LithiumâSulfur Battery Cathodes
Porous carbon can be tailored to great effect for electrochemical energy storage. In this study, we propose a novel structured spherical carbon with a macrohollow core and a microporous shell derived from a sustainable biomass, amylose, by a multistep pyrolysis route without chemical etching. This hierarchically porous carbon shows a particle distribution of 2â10 Îźm and a surface area of 672 m2 gâ1. The structure is an effective host of sulfur for lithiumâsulfur battery cathodes, which reduces the dissolution of polysulfides in the electrolyte and offers high electrical conductivity during discharge/charge cycling. The hierarchically porous carbon can hold 48 wt % sulfur in its porous structure. The S@C hybrid shows an initial capacity of 1490 mAh gâ1 and retains a capacity of 798 mAh gâ1 after 200 cycles at a discharge/charge rate of 0.1 C. A capacity of 487 mAh gâ1 is obtained at a rate of 3 C. Both a one-step pyrolysis and a chemical-reagent-assisted pyrolysis are also assessed to obtain porous carbon from amylose, but the obtained carbon shows structures inferior for sulfur cathodes. The multistep pyrolysis and the resulting hierarchically porous carbon offer an effective approach to the engineering of biomass for energy storage. The micrometer-sized spherical S@C hybrid with different sizes is also favorable for high-tap density and hence the volumetric density of the batteries, opening up a wide scope for practical applications
Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior LithiumâSulfur Battery Cathodes
Porous carbon can be tailored to great effect for electrochemical energy storage. In this study, we propose a novel structured spherical carbon with a macrohollow core and a microporous shell derived from a sustainable biomass, amylose, by a multistep pyrolysis route without chemical etching. This hierarchically porous carbon shows a particle distribution of 2â10 Îźm and a surface area of 672 m2 gâ1. The structure is an effective host of sulfur for lithiumâsulfur battery cathodes, which reduces the dissolution of polysulfides in the electrolyte and offers high electrical conductivity during discharge/charge cycling. The hierarchically porous carbon can hold 48 wt % sulfur in its porous structure. The S@C hybrid shows an initial capacity of 1490 mAh gâ1 and retains a capacity of 798 mAh gâ1 after 200 cycles at a discharge/charge rate of 0.1 C. A capacity of 487 mAh gâ1 is obtained at a rate of 3 C. Both a one-step pyrolysis and a chemical-reagent-assisted pyrolysis are also assessed to obtain porous carbon from amylose, but the obtained carbon shows structures inferior for sulfur cathodes. The multistep pyrolysis and the resulting hierarchically porous carbon offer an effective approach to the engineering of biomass for energy storage. The micrometer-sized spherical S@C hybrid with different sizes is also favorable for high-tap density and hence the volumetric density of the batteries, opening up a wide scope for practical applications
A mechanochemical synthesis of submicron-sized Li2S and a mesoporous Li2S/C hybrid for high performance lithium/sulfur battery cathodes
Lithium sulfide, Li2S, is a promising cathode material for lithiumâsulfur batteries (LSBs), with a high theoretical capacity of 1166 mA h gâ1. However, it suffers from low cycling stability, low-rate capability and high initial activation potential. In addition, commercially available Li2S is of high cost and of large size, over ten microns, which further exacerbate its shortcomings as a sulfur cathode. Exploring new approaches to fabricate small-sized Li2S of low cost and to achieve Li2S cathodes of high electrochemical performance is highly desired. This work reports a novel mechanochemical method for synthesizing Li2S of high purity and submicron size by ball-milling LiH with sulfur in an Ar atmosphere at room temperature. By further milling the as-synthesized Li2S with polyacrylonitrile (PAN) followed by carbonization of PAN at 1000 °C, a Li2S/C hybrid with nano-sized Li2S embedded in a mesoporous carbon matrix is achieved. The hybrid with Li2S as high as 74 wt% shows a high initial capacity of 971 mA h gâ1 at 0.1C and retains a capacity of 570 mA h gâ1 after 200 cycles as a cathode material for LSBs. A capacity of 610 mA h gâ1 is obtained at 1C. The synthesis method of Li2S is facile, environmentally benign, and of high output and low cost. The present work opens a new route for the scalable fabrication of submicron-sized Li2S and for the development of high performance Li2S-based cathodes
Elevated IL-6 Receptor Expression on CD4+ T Cells contributes to the increased Th17 Responses in patients with Chronic Hepatitis B
<p>Abstract</p> <p>Background</p> <p>Increased numbers of Interleukin-17-producing CD4<sup>+ </sup>T cells (Th17) have been found in association with hepatitis B virus (HBV)-induced liver injury. However, the mechanism underlying the increase of Th17 responses in patients with HBV infection remains unclear. In this study, we investigate the possible regulatory mechanisms of increased Th17 responses in patients with chronic hepatitis B(CHB).</p> <p>Methods</p> <p>Th17 response and IL-6R expression on CD4<sup>+ </sup>T cells in peripheral blood samples were determined by flow cytometry. Cytokines TGF-β, IL-1β, IL-6 and IL-17 in plasma and/or supernatant samples were determined by ELISA and the IL-17 and IL-6R mRNA levels were quantified by quantitative real-time reverse polymerase chain reaction.</p> <p>Results</p> <p>All these data indicated that the frequency of periphery Th17 cells is significantly correlated with the percentage of CD4<b><sup>+ </sup></b>T cells expressing IL-6R in CHB patients. CD4<sup>+ </sup>T cells from patients with CHB, but not those from healthy donors, produced higher levels of IL-17 and had more IL-6R expression upon stimulation with the HBV core antigen (HBcAg) in vitro. The PMA/ionomycin and HBcAg -stimulated up-regulation of IL-17 production by CD4<sup>+ </sup>T cells could be reversed by a neutralizing antibody against IL-6R.</p> <p>Conclusion</p> <p>we showed that enhancement of IL-6R expression on CD4<sup>+ </sup>T cells upon HBV infection contributes to increased Th17 response in patients with CHB.</p
Population pharmacokinetics of nalbuphine in patients undergoing general anesthesia surgery
Purpose: The aim of this study was to build a population pharmacokinetics (PopPK) model of nalbuphine and to estimate the suitability of bodyweight or fixed dosage regimen.Method: Adult patients who were undergoing general anesthetic surgery using nalbuphine for induction of anesthesia were included. Plasma concentrations and covariates information were analyzed by non-linear mixed-effects modeling approach. Goodness-of-fit (GOF), non-parametric bootstrap, visual predictive check (VPC) and external evaluation were applied for the final PopPK model evaluation. Monte Carlo simulation was conducted to assess impact of covariates and dosage regimens on the plasma concentration to nalbuphine.Results: 47 patients aged 21â78Â years with a body weight of 48â86Â kg were included in the study. Among them, liver resection accounted for 14.8%, cholecystectomy for 12.8%, pancreatic resection for 36.2% and other surgeries for 36.2%. 353 samples from 27 patients were enrolled in model building group; 100 samples from 20 patients were enrolled in external validation group. The results of model evaluation showed that the pharmacokinetics of nalbuphine was adequately described by a two-compartment model. The hourly net fluid volume infused (HNF) was identified as a significant covariate about the intercompartmental clearance (Q) of nalbuphine with objective function value (OFV) decreasing by 9.643 (p < 0.005, df = 1). Simulation results demonstrated no need to adjust dosage based on HNF, and the biases of two dosage methods were less than 6%. The fixed dosage regimen had lower PK variability than the bodyweight regimen.Conclusion: A two-compartment PopPK model adequately described the concentration profile of nalbuphine intravenous injection for anesthesia induction. While HNF can affect the Q of nalbuphine, the magnitude of the effect was limited. Dosage adjustment based on HNF was not recommended. Furthermore, fixed dosage regimen might be better than body weight dosage regimen
System-level biological effects of extremely low-frequency electromagnetic fields: an in vivo experimental review
During the past decades, the potential effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health have gained great interest all around the world. Though the International Commission on Non-Ionizing Radiation Protection recommended a 100 ÎźT, and then a 200 ÎźT magnetic field limit, the long-term effects of ELF-EMFs on organisms and systems need to be further investigated. It was reported that both electrotherapy and possible effects on human health could be induced under ELF-EM radiation with varied EM frequencies and fields. This present article intends to systematically review the in vivo experimental outcome and the corresponding mechanisms to shed some light on the safety considerations of ELF-EMFs. This will further advance the subsequent application of electrotherapy in human health
- âŚ