3 research outputs found

    Layer-by-Layer Heterostructure of MnO2@Reduced Graphene Oxide Composites as High-Performance Electrodes for Supercapacitors

    No full text
    In this paper, δ-MnO2 with layered structure was prepared by a facile liquid phase method, and exfoliated MnO2 nanosheet (e-MnO2) was obtained by ultrasonic exfoliation, whose surface was negatively charged. Then, positive charges were grafted on the surface of MnO2 nanosheets with a polycation electrolyte of polydiallyl dimethylammonium chloride (PDDA) in different concentrations. A series of e-MnO2@reduced graphene oxide (rGO) composites were obtained by electrostatic self-assembly combined with hydrothermal chemical reduction. When PDDA was adjusted to 0.75 g/L, the thickness of e-MnO2 was ~1.2 nm, and the nanosheets were uniformly adsorbed on the surface of graphene, which shows layer-by-layer morphology with a specific surface area of ~154 m2/g. On account of the unique heterostructure, the composite exhibits good electrochemical performance as supercapacitor electrodes. The specific capacitance of e-MnO2-0.75@rGO can reach 456 F/g at a current density of 1 A/g in KOH electrolyte, which still remains 201 F/g at 10 A/g. In addition, the capacitance retention is 98.7% after 10000 charge-discharge cycles at 20 A/g. Furthermore, an asymmetric supercapacitor (ASC) device of e-MnO2-0.75@rGO//graphene hydrogel (GH) was assembled, of which the specific capacitance achieves 94 F/g (1 A/g) and the cycle stability is excellent, with a retention rate of 99.3% over 10000 cycles (20 A/g)

    Mycobacterium tuberculosis suppresses host antimicrobial peptides by dehydrogenating L-alanine

    No full text
    Abstract Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene β-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis

    Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control

    No full text
    Abstract Monolayer molybdenum disulfide (MoS2), an emergent two-dimensional (2D) semiconductor, holds great promise for transcending the fundamental limits of silicon electronics and continue the downscaling of field-effect transistors. To realize its full potential and high-end applications, controlled synthesis of wafer-scale monolayer MoS2 single crystals on general commercial substrates is highly desired yet challenging. Here, we demonstrate the successful epitaxial growth of 2-inch single-crystal MoS2 monolayers on industry-compatible substrates of c-plane sapphire by engineering the formation of a specific interfacial reconstructed layer through the S/MoO3 precursor ratio control. The unidirectional alignment and seamless stitching of MoS2 domains across the entire wafer are demonstrated through cross-dimensional characterizations ranging from atomic- to centimeter-scale. The epitaxial monolayer MoS2 single crystal shows good wafer-scale uniformity and state-of-the-art quality, as evidenced from the ~100% phonon circular dichroism, exciton valley polarization of ~70%, room-temperature mobility of ~140 cm2v−1s−1, and on/off ratio of ~109. Our work provides a simple strategy to produce wafer-scale single-crystal 2D semiconductors on commercial insulator substrates, paving the way towards the further extension of Moore’s law and industrial applications of 2D electronic circuits
    corecore