22 research outputs found

    Discovering items with potential popularity on social media

    Full text link
    Predicting the future popularity of online content is highly important in many applications. Preferential attachment phenomena is encountered in scale free networks.Under it's influece popular items get more popular thereby resulting in long tailed distribution problem. Consequently, new items which can be popular (potential ones), are suppressed by the already popular items. This paper proposes a novel model which is able to identify potential items. It identifies the potentially popular items by considering the number of links or ratings it has recieved in recent past along with it's popularity decay. For obtaining an effecient model we consider only temporal features of the content, avoiding the cost of extracting other features. We have found that people follow recent behaviours of their peers. In presence of fit or quality items already popular items lose it's popularity. Prediction accuracy is measured on three industrial datasets namely Movielens, Netflix and Facebook wall post. Experimental results show that compare to state-of-the-art model our model have better prediction accuracy.Comment: 7 pages in ACM style.7 figures and 1 tabl

    Variability of Contact Process in Complex Networks

    Full text link
    We study numerically how the structures of distinct networks influence the epidemic dynamics in contact process. We first find that the variability difference between homogeneous and heterogeneous networks is very narrow, although the heterogeneous structures can induce the lighter prevalence. Contrary to non-community networks, strong community structures can cause the secondary outbreak of prevalence and two peaks of variability appeared. Especially in the local community, the extraordinarily large variability in early stage of the outbreak makes the prediction of epidemic spreading hard. Importantly, the bridgeness plays a significant role in the predictability, meaning the further distance of the initial seed to the bridgeness, the less accurate the predictability is. Also, we investigate the effect of different disease reaction mechanisms on variability, and find that the different reaction mechanisms will result in the distinct variabilities at the end of epidemic spreading.Comment: 6 pages, 4 figure

    Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts

    Get PDF
    Self-powered photodetectors with great potential for implanted medical diagnosis and smart communications have been severely hindered by the difficulty of simultaneously achieving high sensitivity and fast response speed. Here, we report an ultrafast and highly sensitive self-powered photodetector based on two-dimensional (2D) InSe, which is achieved by applying a device architecture design and generating ideal Schottky or ohmic contacts on 2D layered semiconductors, which are difficult to realize in the conventional semiconductors owing to their surface Fermi-level pinning. The as-fabricated InSe photodiode features a maximal lateral self-limited depletion region and a vertical fully depleted channel. It exhibits a high detectivity of 1.26 × 1013 Jones and an ultrafast response speed of ∼200 ns, which breaks the response speed limit of reported self-powered photodetectors based on 2D semiconductors. The high sensitivity is achieved by an ultralow dark current noise generated from the robust van der Waals (vdW) Schottky junction and a high photoresponsivity due to the formation of a maximal lateral self-limited depletion region. The ultrafast response time is dominated by the fast carrier drift driven by a strong built-in electric field in the vertical fully depleted channel. This device architecture can help us to design high-performance photodetectors utilizing vdW layered semiconductors

    An efficient annealing-assisted differential evolution for multi-parameter adaptive latent factor analysis

    No full text
    Abstract A high-dimensional and incomplete (HDI) matrix is a typical representation of big data. However, advanced HDI data analysis models tend to have many extra parameters. Manual tuning of these parameters, generally adopting the empirical knowledge, unavoidably leads to additional overhead. Although variable adaptive mechanisms have been proposed, they cannot balance the exploration and exploitation with early convergence. Moreover, learning such multi-parameters brings high computational time, thereby suffering gross accuracy especially when solving a bilinear problem like conducting the commonly used latent factor analysis (LFA) on an HDI matrix. Herein, an efficient annealing-assisted differential evolution for multi-parameter adaptive latent factor analysis (ADMA) is proposed to address these problems. First, a periodic equilibrium mechanism is employed using the physical mechanism annealing, which is embedded in the mutation operation of differential evolution (DE). Then, to further improve its efficiency, we adopt a probabilistic evaluation mechanism consistent with the crossover probability of DE. Experimental results of both adaptive and non-adaptive state-of-the-art methods on industrial HDI datasets illustrate that ADMA achieves a desirable global optimum with reasonable overhead and prevails competing methods in terms of predicting the missing data in HDI matrices

    The Stock Market Model with Delayed Information Impact from a Socioeconomic View

    No full text
    Finding the critical factor and possible “Newton’s laws” in financial markets has been an important issue. However, with the development of information and communication technologies, financial models are becoming more realistic but complex, contradicting the objective law “Greatest truths are the simplest.” Therefore, this paper presents an evolutionary model independent of micro features and attempts to discover the most critical factor. In the model, information is the only critical factor, and stock price is the emergence of collective behavior. The statistical properties of the model are significantly similar to the real market. It also explains the correlations of stocks within an industry, which provides a new idea for studying critical factors and core structures in the financial markets

    Revealing Physiochemical Factors and Zooplankton Influencing <i>Microcystis</i> Bloom Toxicity in a Large-Shallow Lake Using Bayesian Machine Learning

    No full text
    Toxic cyanobacterial blooms have become a severe global hazard to human and environmental health. Most studies have focused on the relationships between cyanobacterial composition and cyanotoxins production. Yet, little is known about the environmental conditions influencing the hazard of cyanotoxins. Here, we analysed a unique 22 sites dataset comprising monthly observations of water quality, cyanobacterial genera, zooplankton assemblages, and microcystins (MCs) quota and concentrations in a large-shallow lake. Missing values of MCs were imputed using a non-negative latent factor (NLF) analysis, and the results achieved a promising accuracy. Furthermore, we used the Bayesian additive regression tree (BART) to quantify how Microcystis bloom toxicity responds to relevant physicochemical characteristics and zooplankton assemblages. As expected, the BART model achieved better performance in Microcystis biomass and MCs concentration predictions than some comparative models, including random forest and multiple linear regression. The importance analysis via BART illustrated that the shade index was overall the best predictor of MCs concentrations, implying the predominant effects of light limitations on the MCs content of Microcystis. Variables of greatest significance to the toxicity of Microcystis also included pH and dissolved inorganic nitrogen. However, total phosphorus was found to be a strong predictor of the biomass of total Microcystis and toxic M. aeruginosa. Together with the partial dependence plot, results revealed the positive correlations between protozoa and Microcystis biomass. In contrast, copepods biomass may regulate the MC quota and concentrations. Overall, our observations arouse universal demands for machine-learning strategies to represent nonlinear relationships between harmful algal blooms and environmental covariates
    corecore