21 research outputs found

    Research Progress of Superhydrophobic Materials in the Field of Anti-/De-Icing and Their Preparation: A Review

    Get PDF
    Accumulated ice has brought much damage to engineering and people’s lives. The accumulation of ice can affect the flight safety of aircraft and lead to the failure of cables and power generation blades; it can even cause damage to human life. Traditional anti-icing and de-icing strategies have many disadvantages such as high energy consumption, low efficiency, or pollution of the environment. Therefore, inspired by animal communities, researchers have developed new passive anti-icing materials such as superhydrophobic material. In this paper, the solid surface wetting phenomenon and superhydrophobic anti-icing and de-icing mechanism were introduced. The methods of fabrication of superhydrophobic surfaces were summarized. The research progress of wear-resistant superhydrophobic coatings, self-healing/self-repairing superhydrophobic coatings, photothermal superhydrophobic coatings, and electrothermal superhydrophobic coatings in the field of anti-icing and de-icing was reviewed. The current problems and challenges were analyzed, and the development trend of superhydrophobic materials was also prospected in the field of anti-icing and de-icing. The practicality of current superhydrophobic materials should continue to be explored in depth

    Determinants of Disease Phenotype Differences Caused by Closely-Related Isolates of Begomovirus Betasatellites Inoculated with the Same Species of Helper Virus

    No full text
    Tomato yellow leaf curl China virus (TYLCCNV) is a monopartite begomovirus associated with different betasatellites. In this study, we investigate two different isolates of Tomato yellow leaf curl China betasatellite (TYLCCNB) to determine what features of the viral genome are required for induction of characteristic phenotypic differences between closely-related betasatellite. When co-agroinoculated with TYLCCNV into Nicotiana spp. and tomato plants, TYLCCNB-Y25 induced only leaf curling on all hosts, while TYLCCNB-Y10 also induced enations, vein yellowing, and shoot distortions. Further assays showed that βC1 of TYLCCNB-Y25 differs from that of TYLCCNB-Y10 in symptom induction and transcriptional modulating. Hybrid satellites were constructed in which the βC1 gene or 200 nt partial promoter-like fragment upstream of the βC1 were exchanged. Infectivity assays showed that a TYLCCNB-Y25 hybrid with the intact TYLCCNB-Y10 βC1 gene was able to induce vein yellowing, shoot distortions, and a reduced size and number of enations. A TYLCCNB-Y10 hybrid with the intact TYLCCNB-Y25 βC1 gene produced only leaf curling. In contrast, the TYLCCNB-Y25 and TYLCCNB-Y10 hybrids with swapped partial promoter-like regions had little effect on the phenotypes induced by wild-type betasatellites. Further experiments showed that the TYLCCNB-Y25 hybrid carrying the C-terminal region of TYLCCNB-Y10 βC1 induced TYLCCNB-Y10-like symptoms. These findings indicate that the βC1 protein is the major symptom determinant and that the C-terminal region of βC1 plays an important role in symptom induction

    The Change of Electronic Transport Behaviors by P and B Doping in Nano-Crystalline Silicon Films with Very High Conductivities

    No full text
    Nano-crystalline Si films with high conductivities are highly desired in order to develop the new generation of nano-devices. Here, we first demonstrate that the grain boundaries played an important role in the carrier transport process in un-doped nano-crystalline Si films as revealed by the temperature-dependent Hall measurements. The potential barrier height can be well estimated from the experimental results, which is in good agreement with the proposed model. Then, by introducing P and B doping, it is found that the scattering of grain boundaries can be significantly suppressed and the Hall mobility is monotonously decreased with the temperature both in P- and B-doped nano-crystalline Si films, which can be attributed to the trapping of P and B dopants in the grain boundary regions to reduce the barriers. Consequently, a room temperature conductivity as high as 1.58 × 103 S/cm and 4 × 102 S/cm is achieved for the P-doped and B-doped samples, respectively

    Formation of high conductive nano-crystalline silicon embedded in amorphous silicon-carbide films with large optical band gap

    No full text
    High conductive phosphorus-doped nano-crystalline Si embedded in Silicon-Carbide (SiC) host matrix (nc-Si:SiC) films were obtained by thermally annealing doped amorphous Si-rich SiC materials. It was found that the room conductivity is increased significantly accompanying with the increase of doping concentrations as well as the enhanced crystallizations. The conductivity can be as high as 630 S/cm for samples with the optical band gap around 2.7 eV, while the carrier mobility is about 17.9 cm2/ V·s. Temperature-dependent conductivity and mobility measurements were performed which suggested that the carrier transport process is strongly affected by both the grain boundaries and the doping concentrations

    LPS Pretreatment Attenuates Cerebral Ischaemia/Reperfusion Injury by Inhibiting Inflammation and Apoptosis

    No full text
    Background/Aims: Lipopolysaccharide (LPS) pretreatment has a strong neuroprotective effect on cerebral ischaemia/reperfusion injury (IRI), but the mechanism has not been fully elucidated to date. This study investigated the effect of LPS pretreatment on the pathway mediated by endoplasmic reticulum (ER) stress–CCAAT/enhancer-binding protein- homologous protein (CHOP) and the role of this pathway on cerebral ischaemia/reperfusion (I/R)-induced inflammation and apoptosis. Methods: Healthy male BALB/c mice were randomised into four groups as follows: sham operation group (sham group, n=30); LPS group (BALB/c mice treated with LPS, n=30); ischaemia/reperfusion group (I/R group, n=30) and I/R+LPS group (BALB/c mice treated with LPS before ischaemia, n=30). The mice were pre-treated with LPS (0.2 mg/kg) intra-peritoneally for three days prior to cerebral ischaemia. After 24 hours, the neurological deficit score, TTC staining and TUNEL assay were used to assess the neuroprotective effect of the LPS pretreatment against cerebral IRI. To assess whether the ER stress-CHOP pathway participated in the LPS-pretreatment neuroprotective mechanism, the expression levels of related proteins (GRP78, CHOP, caspase-12 and caspase-3) from the ischaemic cortical penumbra were detected via a western blot analysis. An immunohistochemical study was used to detect the expression and location of CHOP in the cortical penumbra. To further assess the protective effect of the LPS pretreatment, the concentrations of inflammatory factors (TNF-α, IL-6, IL-1β and IL-10) in the cortical penumbra were measured by ELISA, and ER stress-CHOP pathway inflammation-related caspase-11 was analysed through western blot analysis. Results: As demonstrated by the experiments, the pretreatment with LPS significantly reduced the neurological deficit score and the infarct size of cerebral IRI. The expression levels of ER stress-CHOP pathway related proteins (GRP78, CHOP, caspase-12 and caspase-3) from the cortical penumbra were significantly decreased by LPS, as well as the level of apoptosis in the cells in the brain. Immunohistochemistry showed that the expression of CHOP significantly decreased after the LPS pretreatment. Furthermore, the concentrations of inflammatory factors (TNF-α, IL-1β, IL-6) were reduced after the LPS pretreatment, whereas the anti-inflammatory cytokine IL-10 was upregulated. In addition, ER stress-CHOP pathway inflammation-related caspase-11 expression was significantly suppressed after the pretreatment with LPS. Conclusions: LPS pretreatment significantly ameliorates the effects of cerebral IRI by inhibiting inflammation and apoptosis, and the potential mechanism of the neuroprotective effect may be associated with the ER stress-CHOP mediated signalling pathway

    Changing the freezing interface characteristics to reduce the ice adhesion strength

    No full text
    To mitigate the hazards of ice adhesion and reduce anti/de-icing costs, this study proposed a simple and low-cost anti/de-icing method. Different positions of the attached water's internal interface have different phase transformation times owing to changes in the thermal conductivity characteristics of the material surface. Consequently, the characteristic parameters of water during freezing can be used to reduce the ice adhesion strength. The mold method was used to coat low thermal conductivity silicone rubber with a striped and dotted circular pattern on the surface to change the thermal conductivity continuity of the material surface, and the ice adhesion strength on different samples being measured. Different characteristic parameters during the freezing process were measured using the tracing point method, the tangential freezing interface stress being measured using a purpose-built device. The results showed that a sample surface with a discontinuous distribution of silicone rubber could greatly reduce the ice adhesion strength. For example, compared with the ice adhesion strength on the normal surface of polymethyl methacrylate (PMMA) and an aluminum alloy, 142.95 and 150.22 kPA respectively, the use of PMMA and an aluminum alloy with a stripe coating reduced the ice adhesion strength by a maximum of 82.18% and 72.67%, respectively. When the attached water phased into ice, it was accompanied by the release of heat and an increase in volume. Meanwhile, the tangential interface stress increased instantaneously outward along the interface direction and tended to stabilize. A phase transition time difference was formed within the attached water by changing the thermal conductivity continuity of the material surface. The tangential freezing interface stress, heat released, and the increased volume formed by the adhering water located in the late-frozen region during the freezing process acted on the initially frozen region to destabilize the adhesion interface between it and the material surface; thus reducing the ice adhesion strength. Based on the results, it was evident that changing the thermal conductivity continuity of the material surface could actively reduce the adhesion strength. This study should be helpful in developing simple, low-cost, nonpolluting, and active anti/de-icing methods in the engineering field

    Rehabilitation effect of intelligent rehabilitation training system on hemiplegic limb spasms after stroke

    No full text
    This article aimed to explore the rehabilitation efficacy of intelligent rehabilitation training systems in hemiplegic limb spasms after stroke and provided more theoretical basis for the application of intelligent rehabilitation systems in the rehabilitation of hemiplegic limb spasms after stroke. To explore the rehabilitation efficacy of intelligent rehabilitation training system (RTS for short here) in post-stroke hemiplegic limb spasms, this study selected 99 patients with post-stroke hemiplegic limb spasms admitted to a local tertiary hospital from March 2021 to March 2023 as the research subjects. This article used blind selection to randomly divide them into three groups: control group 1, control group 2, and study group, with 33 patients in each group. Control group 1 used a conventional RTS, group 2 used the brain–computer interface RTS from reference 9, and research group used the intelligent RTS from this article. This article compared the degree of spasticity, balance ability score, motor function score, and daily living activity score of three groups of patients after 10 weeks of treatment. After 10 weeks of treatment, the number of patients in the study group with no spasms at level 0 (24) was significantly higher than the number of patients in group 1 (7) and group 2 (10), with a statistically significant difference (P < 0.05); In the comparison of Barthel index scores, after ten weeks of treatment, the total number of people in the study group with scores starting at 71–80 and 81–100 was 23. The total number of people in the score range of 71–80 and 81–100 in group 1 was 5, while in group 2, the total number of people in this score range was 8. The study group scored considerably higher than the control group and the difference was found to be statistically relevant (P < 0.05). In the Berg balance assessment scale and motor function assessment scale, after 10 weeks of treatment, the scores of the study group patients on both scales were significantly higher than those of group 1 and group 2 (P < 0.05). The intelligent RTS is beneficial for promoting the improvement of spasticity in stroke patients with hemiplegic limb spasms, as well as improving their balance ability, motor ability, and daily life activities. Its rehabilitation effect is good
    corecore