242 research outputs found

    A Discussion on the Detachment Structural Deformation and Its Influence on Pore Structure Evolution in Shale on the Western of the Xuefeng Mountain, South China

    Get PDF
    Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. Organic-rich shale, as the weak layers, usually acts as slippery layers in detachment structural deformation systems. The “comb-like” and “tough-like” fold belts on the western side of the Xuefeng Mountain result from the multilayer detachment, and their formation is different from the typical Jura type structures. The reason is that there are several detachment layers and detachment systems in the stratigraphic column from the Neoproterozoic upwards to the Mesozoic in the study area. As the stress decoupling role, the shale slippery layers tend to undergo strong deformation in the detachment systems and impacted on pore structure evolution in the shale. In order to obtain the detachment structural deformation and its influence on pore structure evolution in shale on the Middle and Upper Yangtze, the structural and textural, geochemical and mineralogical properties analysis, porosity and pore structure feature investigations are performed using shale samples collected from the same shale bed of the Longmaxi Formations (Lower Silurian) of Western of the Xuefeng Mountain, South China

    Context-Aware Block Net for Small Object Detection.

    Get PDF
    State-of-the-art object detectors usually progressively downsample the input image until it is represented by small feature maps, which loses the spatial information and compromises the representation of small objects. In this article, we propose a context-aware block net (CAB Net) to improve small object detection by building high-resolution and strong semantic feature maps. To internally enhance the representation capacity of feature maps with high spatial resolution, we delicately design the context-aware block (CAB). CAB exploits pyramidal dilated convolutions to incorporate multilevel contextual information without losing the original resolution of feature maps. Then, we assemble CAB to the end of the truncated backbone network (e.g., VGG16) with a relatively small downsampling factor (e.g., 8) and cast off all following layers. CAB Net can capture both basic visual patterns as well as semantical information of small objects, thus improving the performance of small object detection. Experiments conducted on the benchmark Tsinghua-Tencent 100K and the Airport dataset show that CAB Net outperforms other top-performing detectors by a large margin while keeping real-time speed, which demonstrates the effectiveness of CAB Net for small object detection

    Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Get PDF
    SummaryRegulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH
    corecore