182 research outputs found

    Composition-Diamond Lemma for Non-associative Algebras over a Commutative Algebra

    Full text link
    We establish the Composition-Diamond lemma for non-associative algebras over a free commutative algebra. As an application, we prove that every countably generated non-associative algebra over an arbitrary commutative algebra KK can be embedded into a two-generated non-associative algebra over KK.Comment: 10 page

    Experimental Observation of a Topological Phase in the Maximally Entangled State of a Pair of Qubits

    Full text link
    Quantum mechanical phase factors can be related to dynamical effects or to the geometrical properties of a trajectory in a given space - either parameter space or Hilbert space. Here, we experimentally investigate a quantum mechanical phase factor that reflects the topology of the SO(3) group: since rotations by π\pi around antiparallel axes are identical, this space is doubly connected. Using pairs of nuclear spins in a maximally entangled state, we subject one of the spins to a cyclic evolution. If the corresponding trajectory in SO(3) can be smoothly deformed to a point, the quantum state at the end of the trajectory is identical to the initial state. For all other trajectories the quantum state changes sign

    Nanocomposites of Carbon Nanotube (CNTs)/CuO with High Sensitivity to Organic Volatiles at Room Temperature

    Get PDF
    AbstractIn order to enhance the sensitivity of carbon nanotube based chemical sensors at room temperature operation, CNTs/CuO nanocomposite was prepared under hydrothermal reaction condition. The resulted-product was characterized with TEM (transmission electron microscopy), XRD (X-ray diffraction) and so on. A chemical prototype sensor was constructed based on CNTs/CuO nanocomposite and an interdigital electrode on flexible polymer substrate. The gas-sensing behavior of the sensor to some typical organic volatiles was investigated at room temperature operation. The results indicated that the carbon nanotube was dispersed well in CuO matrix, the CuO was uniformly coated on the surface of carbon nanotube, and the tubular structure of carbon nanotube was clearly observed. From morphology of TEM images, it can also be observed that a good interfacial adhesion between CNT and CuO matrix was formed, which maybe due to the results of strong interaction between CNTs with carboxyl groups and CuO containing some hydroxy groups. The CNTs/CuO nanocomposite showed dramatically enhanced sensitivity to some typical organic volatiles. This study would provide a simple, low-cost and general approach to functionalize the carbon nanotube. It is also in favor of developing chemical sensors with high sensitivity or catalysts with high activity to organic volatiles at low temperature

    Highly active air electrode catalysts for Zn‐air batteries: Catalytic mechanism and active center from obfuscation to clearness

    Get PDF
    Carbon‐based materials have been found to accelerate the sluggish kinetic reaction and are largely subject to the overall Zn‐air batteries (ZABs) property, while their full catalytic mechanism is still not excavated because of the indistinct internal structure and immature in‐situ technology. Up to now, systematic methods have been utilized to study and design promising high‐performance carbon‐based catalysts. To resolve the real active units and catalytic mechanism, developing molecular catalyst is a significant strategy. Herein, the review will initiate to briefly introduce the working principle and composition of ZABs. An important statement is correspondingly provided about the typical structure and catalytic mechanisms for the air cathode material. It also presents the tremendous endeavors on the catalytic performance and stability of carbon‐based material. Furthermore, combined with theoretical calculation, the self‐defined active sites are analyzed to understand the catalytic character, where the molecular catalyst is subsequently summarized and discussed through highlighting the unambiguous and controllable structure, in the hope of surfacing the optimum catalyst. Building on the fundamental understanding of carbon‐based and molecular catalysts, this review is expected to provide guidance and direction toward designing future mechanistic studies and ORR electrocatalysts

    Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor

    Get PDF
    Tomato volatiles, mainly derived from essential nutrients and health-promoting precursors, affect tomato flavor. Taste volatiles present a major challenge for flavor improvement and quality breeding. In this study, we performed genome-wide association studies (GWAS) to investigate potential chromosome regions associated with the tomato flavor volatiles. We observed significant variation (1200x) among the selected 28 most important volatiles in tomato based on their concentration and odor threshold importance across our sampled accessions. Using 174 tomato accessions, GWAS identified 125 significant associations (P<0.005) among 182 SSR markers and 28 volatiles (27 volatiles with at least one significant association). Several significant associations were co-localized in previously identified quantitative trait loci (QTL). This result provides new potential candidate loci affecting the metabolism of several volatiles

    Lagrange tracking-based long-term drift trajectory prediction method for Autonomous Underwater Vehicle

    Get PDF
    Autonomous Underwater Vehicle (AUV) works autonomously in complex marine environments. After a severe accident, an AUV will lose its power and rely on its small buoyancy to ascend at a slow speed. If the reserved buoyancy is insufficient, when reaching the thermocline, the buoyancy will rapidly decrease to zero. Consequently, the AUV will experience prolonged lateral drift within the thermocline. This study focuses on developing a prediction method for the drift trajectory of an AUV after a long-term power loss accident. The aim is to forecast the potential resurfacing location, providing technical support for surface search and salvage operations of the disabled AUV. To the best of our knowledge, currently, there is no mature and effective method for predicting long-term AUV underwater drift trajectories. In response to this issue, based on real AUV catastrophes, this paper studies the prediction of long-term AUV underwater drift trajectories in the cases of power loss. We propose a three-dimensional trajectory prediction method based on the Lagrange tracking approach. This method takes the AUV's longitudinal velocity, the time taken to reach different depths, and ocean current data at various depths into account. The reason for the AUV's failure to ascend to sea surface lies that the remaining buoyancy is too small to overcome the thermocline. As a result, AUV drifts long time within the thermocline. To address this issue, a method for estimating thermocline currents is proposed, which can be used to predict the lateral drift trajectory of the AUV within the thermocline. Simulation is conducted to compare the results obtained by the proposed method and that in a real accident. The results demonstrate that the proposed approach exhibits small directional and positional errors. This validates the effectiveness of the proposed method
    • 

    corecore