36 research outputs found
Recommended from our members
Reduction in the exposure risk of farmer from e-waste recycling site following environmental policy adjustment: a regional scale view of PAHs in paddy fields
Farmland contamination by polycyclic aromatic hydrocarbons (PAHs) has drawn increasing attention across China with enhanced regulations and environmental policies proposed by government to protect soil environment safety. As the informal electronic waste (e-waste) dismantling activities were forbidden under recent environmental regulation, this study compared levels, compositions, spatial distributions, human health risks of PAHs in paddy soil within the vicinity of an e-waste recycling area in southeastern China, with 129 and 150 soil samples collected in 2011 and 2016, respectively. The soil contamination was dominated with high molecular weight PAHs. The mean concentration of EPA 16 PAHs decreased from 590.4 ± 337.2 μg kg in 2011 to 407.3 ± 232.2 μg kg in 2016. Distribution maps of soil PAHs concentration displayed the temporal change in spatial. Principal component analysis together with diagnostic ratios revealed the combustion of biomass and coal in industrial and unregulated e-waste dismantling were the main sources of PAHs in the study area. Both deterministic and probabilistic assessments demonstrated reduced exposure risk for farmers from 2011 to 2016. Sensitivity analysis revealed that exposure frequency (EF) is the most influential parameter for the total variance in the risk assessment model. This study implied that the more stringent environmental policy and regulation can lead reductions in soil contamination with PAHs. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simulation optimization of physical field of diamond particles deposited by multi-piece substrates HFCVD system
Hot filament CVD method, which is used to synthesize high efficiency and high quality superhard abrasives, has become a research hotspot. Based on a new multi-piece grid substrate, which can increase the single deposition yield of micro-powder, and FLUENT, the fluid simulation software, the traditional model is optimized with unchanged number of single outlet and stable total intake flow but the single inlet is split into five equally sized inlet. The number and the arrangement of inlets that affect the process uniformity are simulated. The physical field of gas in the HFCVD system is compared and analyzed. Results show that the four optimized models all perform improved uniformity of substrate temperature and flow rate, which is conducive to the uniform growth of diamond single crystal particles, but the effect of diamond deposition rate is not significant. Further analysis on the temperature field of the optimized model indicates that the temperature difference of the system is the lowest with five inlets located in the middle top and a single outlet in the middle bottom of the reaction chamber, which satisfies the condition of uniform growth of diamond single crystal particles on multi-piece silicon substrate. Finally, CVD single crystal diamond particles are deposited to verify the reliability of the simulation
Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx and Coshx Based on Improved CORDIC Algorithm
CORDIC algorithm is used for low-cost hardware implementation to calculate transcendental functions. This paper proposes a low-latency high-precision architecture for the computation of hyperbolic functions sinhx and coshx based on an improved CORDIC algorithm, that is, the QH-CORDIC. The principle, structure, and range of convergence of the QH-CORDIC are discussed, and the hardware circuit architecture of functions sinhx and coshx using the QH-CORDIC is plotted in this paper. The proposed architecture is implemented using an FPGA device, showing that it has 75% and 50% latency overhead over the two latest prior works. In the synthesis using TSMC 65 nm standard cell library, ASIC implementation results show that the proposed architecture is also superior to the two latest prior works in terms of total time (latency × period), ATP (area × total time), total energy (power × total time), energy efficiency (total energy/efficient bits), and area efficiency (efficient bits/area/total time). Comparison of related works indicates that it is much more favorable for the proposed architecture to perform high-precision floating-point computations on functions sinhx and coshx than the LUT method, stochastic computing, and other CORDIC algorithms
V-Shaped Toothed Roller Cotton Stalk Puller: Numerical Modeling and Field-Test Validation
The V-shaped toothed roller cotton stalk puller has a low removal ratio and weak pulling effect. Hence, we constructed a simplified mathematical model of the V-shaped tooth roller stalk puller based on elastic collision theory and simple beam theory and conducted a mechanical analysis based on this model to explore the causes of pulling errors and fractures. Specifically, the V-shaped tooth plates of the machine were optimized in an orthogonal experiment with the rotational speed, cogging angle, and ground clearance as the influencing factors, and the removal ratio as the evaluation index. This experiment was designed to enable analysis of the physical characteristics of cotton stalks, and the forces applied during the pulling process. Additionally, a V-shaped toothed roller-type stalk-pulling test bench was constructed. The results revealed that, unlike the cogging angle, the ground clearance significantly affected the removal ratio. Furthermore, the highest removal ratio (i.e., 97%) was achieved when the ground clearance was −20 mm, the rotational speed was 300 rpm, and the cogging angle was 32.5°. An L9 (34) orthogonal field experiment was also conducted with the rotational speed, cogging angle, and ground clearance as the influencing factors to investigate their respective influences on the stalk removal ratio. The results revealed that the ground clearance most significantly influenced the ratio, followed by the rotational speed, and cogging angle. The ground clearance and rotational speed of the V-shaped toothed roller were each found to significantly influence the ratio. Furthermore, a ground clearance of −20 mm, rotational speed of 300 r/min, and cogging angle of 25° yielded an average removal ratio of 98.27%. Through this research, the mechanism of toothed roller stalk pulling is further deepened and the toothed series stalk pulling technology provides theoretical support
Working Mechanism and Parameter Optimization of a Crushing and Impurity Removal Device for Liquid Manure
Aiming to solve the problems of easy clogging and high energy consumption of multi-way fertilization devices for liquid manure, a crushing and impurity removal device for liquid manure was designed by combining the physical characteristics of liquid manure and impurities, and building the corresponding test bench. The proposed device could crush flexible impurities such as straw and filoplume and intercept hard impurities with high density. The main structural parameters of the device were determined according to the survey analysis and the theoretical design. The influences of cutter head shape, cutter edge angle, cutter shaft speed, and cutting clearance on the disqualification rate and energy consumption of straw crushing were obtained by a single-factor experiment. Furthermore, the Box–Behnken central composite design method of the response surface was employed to investigate the effects of the cutter shaft speed, cutting clearance, and cutter edge angle on the disqualification rate and energy consumption of straw crushing. In addition, the working parameters of the device were optimized by employing the response surface method. On this basis, the mathematical relationship model among the disqualification rate, energy consumption, and all influencing factors was established. The results show that the optimal combination of working parameters includes a cutter shaft speed of 312 r/min, a cutting clearance of 1.4 mm, and a cutter edge angle of 45°. From the prediction model, the predicted failure rate was 4.15%, and the predicted energy consumption was 47.53 J. The verification experiment was then performed under the optimal combination of working parameters. The obtained disqualification rate was 4.08% and the energy consumption was 47.56 J, which met the design and work requirements
Effects of Membrane Covers and Biochar on Compost Quality and Greenhouse Gas Reduction in Aerobic Composting
The addition of biochar and the use of membrane coverings are two methods used in aerobic composting of agricultural waste. The effectiveness of each of these two methods on compost quality and reduction of greenhouse gas emissions was tested in the laboratory. The results showed that both methods increased the maximum composting temperature and extended the thermophilic period. The germination index of biochar-treated compost and membrane-covered compost reached 70% on the 18th day, which was 12 days earlier than the corresponding value in the control group. The products from the biochar-treated compost had higher pH and lower electrical conductivity, compared with the product of the control group, indicating that these products are more suitable for acidic soils. In terms of greenhouse gas reduction, both methods were found to reduce the emissions of CH4 and N2O from composting. The addition of biochar had a better emission reduction effect on N2O, whereas the membrane covering technique yielded a better effect on CH4 emission reduction. The results of this study provide technical support for managed aerobic composting to reduce greenhouse gas emissions
Simulation and Experiment of Compression Molding Behavior of Substate Block Suitable for Mechanical Transplanting Based on Discrete Element Method (DEM)
The compression molding performance of a substrate block has a significant effect on the quality and stability of mechanical transplanting. The physical experiment and DEM simulation were combined to evaluate the compression molding behavior of substrate block in this study. A calibration procedure of DEM parameters of peat particles was proposed at first. Then, the above parameters were brought into the contact model of the compression system–particles, and the effect of the loading speed on the compression behavior of the peat substrate block was investigated. The compressive force–displacement curves of the simulated and measured tests were all contained in the initial linear stage and non-linear stiffing stage. The particle number of central sections was higher than side section, and the variable coefficient was greater at higher loading speed. The substrate blocks all expanded after demolding. The higher the loading speed, the greater the expansion in the height’s direction, and the easier it was for cracks to be generated near the bottom. This study will provide a reference for the design of substrate block forming machines
Effects of Membrane Covers and Biochar on Compost Quality and Greenhouse Gas Reduction in Aerobic Composting
The addition of biochar and the use of membrane coverings are two methods used in aerobic composting of agricultural waste. The effectiveness of each of these two methods on compost quality and reduction of greenhouse gas emissions was tested in the laboratory. The results showed that both methods increased the maximum composting temperature and extended the thermophilic period. The germination index of biochar-treated compost and membrane-covered compost reached 70% on the 18th day, which was 12 days earlier than the corresponding value in the control group. The products from the biochar-treated compost had higher pH and lower electrical conductivity, compared with the product of the control group, indicating that these products are more suitable for acidic soils. In terms of greenhouse gas reduction, both methods were found to reduce the emissions of CH4 and N2O from composting. The addition of biochar had a better emission reduction effect on N2O, whereas the membrane covering technique yielded a better effect on CH4 emission reduction. The results of this study provide technical support for managed aerobic composting to reduce greenhouse gas emissions
Working Mechanism and Parameter Optimization of a Crushing and Impurity Removal Device for Liquid Manure
Aiming to solve the problems of easy clogging and high energy consumption of multi-way fertilization devices for liquid manure, a crushing and impurity removal device for liquid manure was designed by combining the physical characteristics of liquid manure and impurities, and building the corresponding test bench. The proposed device could crush flexible impurities such as straw and filoplume and intercept hard impurities with high density. The main structural parameters of the device were determined according to the survey analysis and the theoretical design. The influences of cutter head shape, cutter edge angle, cutter shaft speed, and cutting clearance on the disqualification rate and energy consumption of straw crushing were obtained by a single-factor experiment. Furthermore, the Box–Behnken central composite design method of the response surface was employed to investigate the effects of the cutter shaft speed, cutting clearance, and cutter edge angle on the disqualification rate and energy consumption of straw crushing. In addition, the working parameters of the device were optimized by employing the response surface method. On this basis, the mathematical relationship model among the disqualification rate, energy consumption, and all influencing factors was established. The results show that the optimal combination of working parameters includes a cutter shaft speed of 312 r/min, a cutting clearance of 1.4 mm, and a cutter edge angle of 45°. From the prediction model, the predicted failure rate was 4.15%, and the predicted energy consumption was 47.53 J. The verification experiment was then performed under the optimal combination of working parameters. The obtained disqualification rate was 4.08% and the energy consumption was 47.56 J, which met the design and work requirements