174 research outputs found

    A discussion on the interrelationships between five properties in reservoir evaluation

    Get PDF
    AbstractReservoir pore spaces (incl. pores, fractures and vugs) are too complex to be predicted by use of the traditional interrelationships between the four properties of reservoirs, thus more and more contradictions occur in reservoir evaluation. A great number of case studies were made to reveal the causes of these contradictions and the corresponding solutions were also proposed. For the reservoirs with complex pore spaces, we found four common types of contradictions between porosity and permeability, porosity and water saturation, absolute permeability and effective permeability, and electrical property and hydrocarbon property. These contradictions are mainly caused by variation of pore types, pore-throat sizes and fracture occurrence. On this basis, the concept of geometrical property was presented and methods were discussed for qualitatively or quantitatively describing the geometrical properties of pores, fractures and vugs. The following findings were achieved. (1) For pores, two relationships were established between pores & throat sizes and rock textures, physical property & fluid property, and between pore types and fluid property & logging responses. (2) For fractures, five relationships were established between occurrence and pore texture index (m), radial extension and deep/shallow borehole resistivity, openness and fracture permeability, occurrence and matrix water saturation, and between development index and lithology. (3) For vugs, two relationships were established between size & connectivity and m value & three porosities derived from logging responses (neutron, density and sonic wave), and filling degree and logging responses. The interrelationships between geometrical property, lithology, physical property, fluid property and electrical property can significantly improve the evaluation of complex reservoirs such as carbonates

    Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications

    Get PDF
    The use of light to mediate controlled radical polymerization has emerged as a powerful strategy for rational polymer synthesis and advanced materials fabrication. This review provides a comprehensive survey of photocontrolled, living radical polymerizations (photo-CRPs). From the perspective of mechanism, all known photo-CRPs are divided into either (1) intramolecular photochemical processes or (2) photoredox processes. Within these mechanistic regimes, a large number of methods are summarized and further classified into subcategories based on the specific reagents, catalysts, etc., involved. To provide a clear understanding of each subcategory, reaction mechanisms are discussed. In addition, applications of photo-CRP reported so far, which include surface fabrication, particle preparation, photoresponsive gel design, and continuous flow technology, are summarized. We hope this review will not only provide informative knowledge to researchers in this field but also stimulate new ideas and applications to further advance photocontrolled reactions.National Science Foundation (U.S.) (CHE-1334703

    The Optimal Collision Avoidance Trajectory Planning of Redundant Manipulators in the Process of Grinding Ceramic Billet Surface

    Get PDF
    The intelligent manufacturing system (IMS) is widely used in the surface machining of the workpiece. In the process of ceramic surface grinding, the intelligent machine (manipulator) in IMS is required to automatically plan the collision avoidance trajectory in a complex environment. This paper presents an optimal trajectory planning method of the use of redundant manipulators in the surface grinding of ceramic billet, which is based on trajectory evaluation. The collision avoidance trajectory can be optimized, taking into account several parameters in the trajectory, including the length of the collision avoidance path, the weighted sum of the strokes of all joints, and the duration of the collision avoidance trajectory. Firstly, get the planning task. Secondly, set the planning parameters and obtain a number of collision avoidance trajectories. Finally, the evaluation function is used to evaluate the collision avoidance trajectories and get the optimal collision avoidance trajectory. The performance of the proposed optimal collision avoidance trajectory planning method is validated in different evaluation functions

    Cardiac Sca-1+ cells are not intrinsic stem cells for myocardial development, renewal and repair

    Get PDF
    Background: For over a decade, Sca-1+ cells within the mouse heart have been widely recognized as a stem cell population with multipotency that can give rise to cardiomyocytes, endothelial cells and smooth muscle cells in vitro and after cardiac grafting. However, the developmental origin and authentic nature of these cells remain elusive. Methods: Here, we used a series of high-fidelity genetic mouse models to characterize the identity and regenerative potential of cardiac resident Sca-1+ cells. Results: With these novel genetic mouse models, we found that Sca-1 does not label cardiac precursor cells during early embryonic heart formation. Postnatal cardiac resident Sca-1+ cells are in fact a pure endothelial cell population. They retain endothelial properties and exhibit minimal cardiomyogenic potential during development, normal aging and upon ischemic injury. Conclusions: Our study provides definitive insights into the nature of cardiac resident Sca-1+ cells. The observations challenge the current dogma that cardiac resident Sca-1+ cells are intrinsic stem cells for myocardial development, renewal and repair and suggest that the mechanisms of transplanted Sca-1+ cells in heart repair need to be reassessed

    Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice

    Get PDF
    ASXL1 is mutated/deleted with high frequencies in multiple forms of myeloid malignancies, and its alterations are associated with poor prognosis. De novo ASXL1 mutations cause Bohring-Opitz syndrome characterized by multiple congenital malformations. We show that Asxl1 deletion in mice led to developmental abnormalities including dwarfism, anophthalmia, and 80% embryonic lethality. Surviving Asxl1(-/-) mice lived for up to 42 days and developed features of myelodysplastic syndrome (MDS), including dysplastic neutrophils and multiple lineage cytopenia. Asxl1(-/-) mice had a reduced hematopoietic stem cell (HSC) pool, and Asxl1(-/-) HSCs exhibited decreased hematopoietic repopulating capacity, with skewed cell differentiation favoring granulocytic lineage. Asxl1(+/-) mice also developed mild MDS-like disease, which could progress to MDS/myeloproliferative neoplasm, demonstrating a haploinsufficient effect of Asxl1 in the pathogenesis of myeloid malignancies. Asxl1 loss led to an increased apoptosis and mitosis in Lineage(-)c-Kit(+) (Lin(-)c-Kit(+)) cells, consistent with human MDS. Furthermore, Asxl1(-/-) Lin(-)c-Kit(+) cells exhibited decreased global levels of H3K27me3 and H3K4me3 and altered expression of genes regulating apoptosis (Bcl2, Bcl2l12, Bcl2l13). Collectively, we report a novel ASXL1 murine model that recapitulates human myeloid malignancies, implying that Asxl1 functions as a tumor suppressor to maintain hematopoietic cell homeostasis. Future work is necessary to clarify the contribution of microenvironment to the hematopoietic phenotypes observed in the constitutional Asxl1(-/-) mice

    Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice

    Get PDF
    Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1−/− pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3CreNf1flox/−. Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1

    ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis

    Get PDF
    ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells

    Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice

    Get PDF
    De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development

    Hyperactive transforming growth factor-β1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model

    Get PDF
    Dysregulated transforming growth factor beta (TGF-β) signaling is associated with a spectrum of osseous defects as seen in Loeys-Dietz syndrome, Marfan syndrome, and Camurati-Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF-β1 signaling pivotally underpins osseous defects in Nf1(flox/-) ;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF-β1 levels are fivefold to sixfold increased both in Nf1(flox/-) ;Col2.3Cre mice and in a cohort of NF1 patients. Nf1-deficient osteoblasts, the principal source of TGF-β1 in bone, overexpress TGF-β1 in a gene dosage-dependent fashion. Moreover, Nf1-deficient osteoblasts and osteoclasts are hyperresponsive to TGF-β1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21-Ras-dependent hyperactivation of the canonical TGF-β1-Smad pathway. Reexpression of the human, full-length neurofibromin guanosine triphosphatase (GTPase)-activating protein (GAP)-related domain (NF1 GRD) in primary Nf1-deficient osteoblast progenitors, attenuated TGF-β1 expression levels and reduced Smad phosphorylation in response to TGF-β1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF-β receptor 1 (TβRI) kinase inhibitor, SD-208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1(flox/-) ;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF-β1 signaling in the pathogenesis of NF1-associated osteoporosis and pseudarthrosis, thus implicating the TGF-β signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapie
    • …
    corecore