271 research outputs found

    Topological Semimetal-Insulator Quantum Phase Transition in Zintl Compounds Ba2X (X=Si, Ge)

    Get PDF
    By first-principles calculations, we find that Ba2X(X=Si, Ge) hosts a topological semimetal phase with one nodal ring in the kx=0 plane, which is protected by the glide mirror symmetry when spin-orbit coupling (SOC) is ignored. The corresponding drumheadlike surface flat band appears on the (100) surface in surface Green function calculation. Furthermore, a topological-semimetal-to-insulator transition (TSMIT) is found. The nodal line semimetal would evolve into topological insulator as SOC is turned on. The topologically protected metallic surface states emerge around the Gamma=0 point, which could be tuned into topologically-trivial insulator state by more than 3% hydrostatic strain. These results reveal a new category of materials showing quantum phase transition between topological semimetal and insulator, and tunability through elastic strain engineering.Comment: 14 pages. 4 figure

    Thermal Transport for Probing Quantum Materials

    Full text link
    Thermal transport is less appreciated in probing quantum materials in comparison to electrical transport. This article aims to show the pivotal role that thermal transport may play in understanding quantum materials: the longitudinal thermal transport reflects the itinerant quasiparticles even in an electrical insulating phase, while the transverse thermal transport such as thermal Hall and Nernst effect are tightly linked to nontrivial topology. We discuss three types of examples: quantum spin liquids where thermal transport identifies its existence, superconductors where thermal transport reveals the superconducting gap structure, and topological Weyl semimetals where anomalous Nernst effect is a consequence of nontrivial Berry curvature. We conclude with an outlook of the unique insights thermal transport may offer to probe a much broader category of quantum phenomena.Comment: A short review article with 6 figures. Comments are welcome

    Single Particle Transport in Two-dimensional Heterojunction Interlayer Tunneling Field Effect Transistor

    Full text link
    The single particle tunneling in a vertical stack consisting of monolayers of two-dimensional semiconductors is studied theoretically and its application to a novel Two-dimensional Heterojunction Interlayer Tunneling Field Effect Transistor (Thin-TFET) is proposed and described. The tunneling current is calculated by using a formalism based on the Bardeen's transfer Hamiltonian, and including a semi-classical treatment of scattering and energy broadening effects. The misalignment between the two 2D materials is also studied and found to influence the magnitude of the tunneling current, but have a modest impact on its gate voltage dependence. Our simulation results suggest that the Thin-TFETs can achieve very steep subthreshold swing, whose lower limit is ultimately set by the band tails in the energy gaps of the 2D materials produced by energy broadening. The Thin-TFET is thus very promising as a low voltage, low energy solid state electronic switch
    • …
    corecore