124 research outputs found

    Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L.), one of the most important oilseed crops cultivated worldwide. RESULTS: A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. CONCLUSIONS: We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut

    A Comparison of Two Methods on the Climatic Effects of Urbanization in the Beijing-Tianjin-Hebei Metropolitan Area

    No full text
    Both the “urban minus rural” (UMR) and the “observation minus reanalysis” (OMR) methods were used to quantify the potential impacts of urbanization on regional temperature changes in the Beijing-Tianjin-Hebei metropolitan area in China. DMSP/OLS nighttime light imagery and population census data were used to classify stations into four classes: rural, small city, medium city, and large city groups. The regional average annual mean temperature was estimated to increase by 0.12°C decade−1 derived from urban warming, accounting for 40% of total climate warming from 1960 to 2009 using the UMR method. The OMR method also indicates that rapid urbanization has a significant influence on surface warming trend although the urban warming intensity is dependent on reanalysis dataset. The seasonal cycle patterns from all three datasets are consistent with each other, which is contrary to the UMR result owing to the cooling effect of agriculture activity in the rural stations confusing the UMR result. So in this paper we found a deficiency of the UMR method where it would underestimate the effects of urbanization in summer. In this regard, the results from the OMR method are relatively more convincing although we admit it still has many other problems

    Sunshine Duration Variability in Haihe River Basin, China, during 1966–2015

    No full text
    Sunshine can have a profound impact on the systematic change in climate elements, such as temperature and wind speed, and in turn affects many aspects of the human society. In recent years, there has been a substantial interest in the variation of sunshine duration due to the dramatic global climate change. Hence, there is a need to better understand the variation of sunshine duration in order to cope with climate change. This study aimed to analyze the variation of sunshine duration in Haihe River basin, China, and its relationship with temperature, wind speed and low-level cloudiness. The annual, seasonal and monthly changes of sunshine duration were analyzed based on the data collected from 33 meteorological stations over the Haihe River basin during 1966–2015. It is evident that the annual, seasonal and monthly sunshine duration shows a decreasing trend over time. In addition, the annual sunshine duration is lower with a higher climate tendency rate in the southern and eastern coastal regions than that in the northwestern regions. It is negatively correlated with temperature (r = −0.50) and low-level cloudiness (r = −0.29), but positively with wind speed (r = 0.61). Wind speed may be one of the important causes of the decrease of sunshine duration in the Haihe River basin during 1966–2015. These changes may have significant implications for the hydrological cycle in the area

    A Forecast-Skill-Based Dynamic Pre-Storm Level Control for Reservoir Flood-Control Operation

    No full text
    The design and operation of reservoirs based on conventional flood-limited water levels (FLWL) implicitly adopts the assumption of hydrological stationarity. As such, historical-record-based FLWL may not be the best choice for flood-control operations due to the inherent non-stationarity of rainfall inputs. With maturing flood forecasts, this study focuses on establishing linkage between FLWL and skill of forecast, thus developing a “dynamic pre-storm level” approach for reservoir flood-control operations. The approach utilizes forecast flood magnitude, forecast skill and exceedance probability of forecast error to determine the pre-storm reservoir storage for each flood event. The exceedance probability of forecast error for each incoming flood is used as the reservoir flood control standard instead of the probability of a static return interval flood. This approach is demonstrated in a hypothetical situation in the Three Gorges Reservoir in China. The results show that under zero-forecast-skill conditions, the proposed dynamic pre-storm level matches well with the Three Gorges Reservoir-designed FLWL; and, as the forecast accuracy/skill increase, the proposed approach can make better use of the increased forecast accuracy, thereby maximizing floodwater utilization and reservoir storage. In this way, coupling the new approach with FLWL allows for more efficient and economic day-to-day reservoir operations without adding any flood risk. This study validates the usefulness of dynamic water level control during flood season, considering the improvement of flood forecast accuracy
    corecore