1,017 research outputs found

    Eriocaulon buergerianum extract protects PC12 cells and neurons in zebrafish against 6-hydroxydopamine-induced damage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ericaulon buergerianum </it>(<it>Gujingcao</it>) is an ophthalmic, anti-inflammatory and antimicrobial Chinese medicinal herb. This study aims to investigate the neuroprotective effects of <it>Ericaulon buergerianum </it>ethanol extract (EBE) and to elucidate its underlying action mechanism.</p> <p>Methods</p> <p>The viability of dopaminergic (DA) neuron in zebrafish was examined by anti-tyrosine hydroxylase (TH) immunostaining. The locomotor activity of zebrafish was assessed with a digital video tracking system. The viability and cellular damage of the PC12 cells were determined by MTT and LDH assays respectively. The nuclear morphological changes in apoptotic cells were evaluated with DNA staining by Hoechst 33342 dye. Intracellular nitric oxide (NO) was quantified by DAF-FM diacetate staining. The expression of inducible nitric oxide synthase (iNOS) was determined by Western blot.</p> <p>Results</p> <p>EBE inhibited the 6-OHDA-induced decrease in total distance of movement in zebrafish. Pretreatments of EBE (25, 50, 100 and 200 μg/ml) increased the viability of 6-OHDA-damaged PC12 cells in a dose dependent manner. Protection against 6-OHDA-induced nuclear fragmentation and accumulation of apoptotic bodies was also observed in EBE pretreated cells. Anti-oxidative (inhibition of NO production and iNOS expression in PC12 cells <it>in vitro</it>) activities of EBE are related to its neuroprotective effects in 6-OHDA-induced DA neuron damage.</p> <p>Conclusion</p> <p>EBE exhibited significant neuroprotective activities in zebrafish, including recovery of dopaminergic neuron loss caused by 6-OHDA in a dose-dependent manner <it>in vivo</it>, inhibition of 6-OHDA-induced decrease of total distance in movement in zebrafish. The iNOS-NO pathway may be involved.</p

    Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation.

    Get PDF
    Zebrafish (Danio rerio) assays provide a versatile pharmacological platform to test compounds on a wide range of behaviors in a whole organism. A major challenge lies in the lack of knowledge about the bioavailability and pharmacodynamic effects of bioactive compounds in this model organism. Here, we employed a combined methodology of LC-ESI-MS/MS analytics and targeted metabolomics with behavioral experiments to evaluate the anticonvulsant and potentially toxic effects of the angular dihydropyranocoumarin pteryxin (PTX) in comparison to the antiepileptic drug sodium valproate (VPN) in zebrafish larvae. PTX occurs in different Apiaceae plants traditionally used in Europe to treat epilepsy but has not been investigated so far. To compare potency and efficacy, the uptake of PTX and VPN into zebrafish larvae was quantified as larvae whole-body concentrations together with amino acids and neurotransmitters as proxy pharmacodynamic readout. The convulsant agent pentylenetetrazole (PTZ) acutely reduced the levels of most metabolites, including acetylcholine and serotonin. Conversely, PTX strongly reduced neutral essential amino acids in a LAT1 (SLCA5)-independent manner, but, similarly to VPN specifically increased the levels of serotonin, acetylcholine, and choline, but also ethanolamine. PTX dose and time-dependent manner inhibited PTZ-induced seizure-like movements resulting in a ~70% efficacy after 1 h at 20 µM (the equivalent of 4.28 ± 0.28 µg/g in larvae whole-body). VPN treated for 1 h with 5 mM (the equivalent of 18.17 ± 0.40 µg/g in larvae whole-body) showed a ~80% efficacy. Unexpectedly, PTX (1-20 µM) showed significantly higher bioavailability than VPN (0.1-5 mM) in immersed zebrafish larvae, possibly because VPN in the medium dissociated partially to the readily bioavailable valproic acid. The anticonvulsive effect of PTX was confirmed by local field potential (LFP) recordings. Noteworthy, both substances specifically increased and restored whole-body acetylcholine, choline, and serotonin levels in control and PTZ-treated zebrafish larvae, indicative of vagus nerve stimulation (VNS), which is an adjunctive therapeutic strategy to treat refractory epilepsy in humans. Our study demonstrates the utility of targeted metabolomics in zebrafish assays and shows that VPN and PTX pharmacologically act on the autonomous nervous system by activating parasympathetic neurotransmitters

    Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Panax notoginseng </it>is commonly used for the treatment of cardiovascular diseases in China. The present study investigates the effects of three different saponin fractions (<it>ie </it>total saponins, PNS; protopanaxadiol-type saponin, PDS; and protopanaxatriol-type saponin, PTS) and two major individual ingredients (<it>ie </it>ginsenoside Rg<sub>1 </sub>and Rb<sub>1</sub>) from <it>P. notoginseng </it>on the endothelial inflammatory response <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>Recombinant human tumor necrosis factor-α (TNF-α) was added to the culture medium of human coronary artery endothelial cells (HCAECs) to induce an inflammatory response. A cell adhesion assay was used to determine the effect of the <it>P. notoginseng </it>saponin fractions on endothelial-monocyte interaction. The cell adhesion molecule (CAMs) expression, including ICAM-1 and VCAM-1, in the protein level on the surface of endothelial cells were measured by cellular ELISA. CAMs expression in mRNA level was also assayed by qRT-PCR in the HCAECs and the aorta of rat fed with high cholesterol diet (HCD). Western blotting was used to detect effect of the saponin fractions on CAMs protein expression in HCAECs. In addition, nuclear translocation of p65, a surrogate marker for NF-κB activation, was measured by immunostaining.</p> <p>Results</p> <p>Three saponin fractions and two individual ginsenosides exhibited the inhibitory effects on monocyte adhesion on TNF-α-activated HCAECs and expression of ICAM-1 and VCAM-1 at both mRNA and protein levels <it>in vitro</it>. The saponin fractions exhibited a similar trend of the inhibitory effects on the mRNA expression of CAMs in the aorta of HCD-fed rat <it>in vivo</it>. These inhibitory effect of saponin fractions maybe attribute partially to the suppression of the TNF-α-induced NF-κB activation.</p> <p>Conclusion</p> <p>Our data demonstrate that saponin fractions (<it>ie </it>PNS, PDS and PTS) and major individual ginsenosides (<it>ie </it>Rg<sub>1 </sub>and Rb<sub>1</sub>) have potential anti-atherogenic effects. Among the tested saponin fractions, PDS is the most potent saponin fraction against TNF-α-induced monocyte adhesion as well as the expression of adhesion molecules <it>in vitro </it>and <it>in vivo</it>.</p

    Health-related quality of life, functional impairment and comorbidity in people with mild-to-moderate chronic kidney disease: a cross-sectional study

    Get PDF
    Objectives: To determine the associations between comorbidities, health-related quality of life (HRQoL) and functional impairment in people with mild-to-moderate chronic kidney disease (CKD) in primary care.Design: Cross-sectional analysis at 5-year follow-up in a prospective cohort study.Setting: Thirty-two general practitioner surgeries in England.Participants: 1008 participants with CKD stage 3 (of 1741 people recruited at baseline in the Renal Risk in Derby study) who survived to 5?years and had complete follow-up data for HRQoL and functional status (FS).Primary and secondary outcome measures HRQoL assessed using the 5-level EQ-5D version (EQ-5D-5L, with domains of mobility, self-care, usual activities, pain/discomfort and anxiety/depression and index value using utility scores calculated from the English general population), and FS using the Karnofsky Performance Status scale (functional impairment defined as Karnofksy score ?70). Comorbidity was defined by self-reported or doctor-diagnosed condition, disease-specific medication or blood result.Results: Mean age was 75.8 years. The numbers reporting some problems in EQ-5D-5L domains were: 582 (57.7%) for mobility, 166 (16.5%) for self-care, 466 (46.2%) for usual activities, 712 (70.6%) for pain/discomfort and 319 (31.6%) for anxiety/depression. Only 191 (18.9%) reported no problems in any domain. HRQoL index values showed greater variation among those with lower FS (eg, for those with Karnofsky score of 60, the median (IQR) EQ-5D index value was 0.45 (0.24 to 0.68) compared with 0.94 (0.86 to 1) for those with Karnofsky score of 90). Overall, 234 (23.2%) had functional impairment.In multivariable logistic regression models, functional impairment was independently associated with experiencing problems for all EQ-5D-5L domains (mobility: OR 16.87 (95% CI 8.70 to 32.79, p < 0.001, self-care: OR 13.08 (95% CI 8.46 to 20.22), p< 0.001, usual activities: OR 8.27 (95% CI 5.43 to 12.58), p< 0.001, pain/discomfort: OR 2.94 (95% CI 1.86 to 4.67), p< 0.001, anxiety/depression: 3.08 (95% CI 2.23 to 4.27), p< 0.001). Higher comorbidity count and obesity were independently associated with problems in mobility, self-care, usual activities and pain/discomfort: for three or more comorbidities versus none: (mobility: OR 2.10 (95% CI 1.08 to 4.10, p for trend 0.002), self-care: OR 2.64 (95% CI 0.72 to 9.67, p for trend 0.05), usual activities: OR 4.20 (95% CI 2.02 to 8.74, p for trend < 0.001), pain/discomfort: OR 3.06 (95% CI 1.63 to 5.73, p for trend < 0.001)), and for obese (body mass index (BMI) ?30?kg/m2) versus BMI < 25?kg/m2: (mobility: OR 2.44 (95% CI 1.61 to 3.69, p for trend < 0.001), self-care: OR 1.98 (95% CI 1.06 to 3.71, p for trend 0.003), usual activities: OR 1.82 (95% CI 1.19 to 2.76, p for trend 0.019), pain/discomfort: OR 2.37 (95% CI 1.58 to 3.55, p for trend < 0.001)). Female sex, lower FS and lower educational attainment were independently associated with anxiety/depression (ORs 1.60 (95% CI 1.18 to 2.16, p 0.002), 3.08 (95% CI 2.23 to 4.27, p< 0.001) and 1.67 (95% CI 1.10 to 2.52, p 0.009), respectively). Older age, higher comorbidity count, albuminuria (?30?mg/mmol vs < 3?mg/mmol), lower educational attainment (no formal qualifications vs degree level) and obesity were independently associated with functional impairment (ORs 1.07 (95% CI 1.04 to 1.09, p< 0.001), 2.18 (95% CI 0.80 to 5.96, p for trend < 0.001), 1.74 (95% CI 0.82 to 3.68, p for trend 0.005), 2.08 (95% CI 1.26 to 3.41, p for trend < 0.001) and 4.23 (95% CI 2.48 to 7.20), respectively).Conclusions: The majority of persons with mild-to-moderate CKD reported reductions in at least one HRQoL domain, which were independently associated with comorbidities, obesity and functional impairment

    A natural small molecule aspidosperma-type alkaloid, hecubine, as a new TREM2 activator for alleviating lipopolysaccharide-induced neuroinflammation in vitro and in vivo

    Get PDF
    Neuroinflammation and oxidative stress play a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease. The triggering receptor expressed on myeloid cells 2 (TREM2), highly expressed by microglia in the central nervous system (CNS), can modulate neuroinflammatory responses. Currently, there are no approved drugs specifically targeting TREM2 for CNS diseases. Aspidosperma alkaloids have shown potential as anti-inflammatory and neuroprotective agents. This study aimed to elucidate the potential therapeutic effect of Hecubine, a natural aspidosperma-type alkaloid, as a TREM2 activator in lipopolysaccharide (LPS)-stimulated neuroinflammation in in vitro and in vivo models. In this study, molecular docking and cellular thermal shift assay (CTSA) were employed to investigate the interaction between Hecubine and TREM2. Enzyme-linked immunosorbent assay (ELISA), quantitative PCR, immunofluorescence, Western blotting, and shRNA gene knockdown were used to assess the anti-neuroinflammatory and antioxidant effects of Hecubine in microglial cells and zebrafish. Our results revealed that Hecubine directly interacted with TREM2, leading to its activation. Knockdown of TREM2 mRNA expression significantly abolished the anti-inflammatory and antioxidant effects of Hecubine on LPS-stimulated proinflammatory mediators (NO, TNF-α, IL-6, and IL-1β) and oxidative stress in microglia cells. Furthermore, Hecubine upregulated Nrf2 expression levels while downregulating TLR4 signaling expression levels both in vivo and in vitro. Silencing TREM2 upregulated TLR4 and downregulated Nrf2 signaling pathways, mimicking the effect of Hecubine, further supporting TREM2 as the drug target by which Hecubine inhibits neuroinflammation. In conclusion, this is the first study to identify a small molecule, namely Hecubine directly targeting TREM2 to mediate anti-neuroinflammation and anti-oxidative effects, which serves as a potential therapeutic agent for the treatment of neural inflammation-associated CNS diseases

    Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    Get PDF
    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities

    Immunoregulatory Protein Profiles of Necrotizing Enterocolitis versus Spontaneous Intestinal Perforation in Preterm Infants

    Get PDF
    Necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP) are the most common acute surgical emergencies associated with high morbidity and mortality in preterm infants. We aimed to compare the profiles of immunoregulatory proteins and identify novel mediators in plasma of NEC and SIP infants. We also investigated the expression of target genes in resected intestinal tissues and an enterocyte cell line. Using Cytokine Antibody Array assay, we reported the first comparative profiles of immunoregulatory proteins in plasma of NEC and SIP infants, and showed that dysregulated proteins belonged to functionally diversified categories, including pro- and anti-inflammation, angiogenesis, cell growth, wound healing, anti-apoptosis, cell adhesion and extracellular matrix reorganization. Validation by ELISA confirmed significantly higher concentrations of interleukin (IL)-6, angiopoietin (Ang)-2, soluble type II interleukin-1 receptor (sIL-1RII), and soluble urokinase-type plasminogen activator receptor (suPAR) in NEC infants compared with gestational age-matched control, and a lower level of an epidermal growth factor receptor, secreted form of receptor tyrosine-protein kinase ErbB3 (sErbB3), compared with SIP infants. mRNA expressions of IL1-RII and uPAR were up-regulated in resected bowel tissues from NEC infants, indicating that immunoregulation also occurred at the cellular level. In FHs-74 Int cells, Ang-2, IL1-RII and uPAR mRNA expressions were significantly induced by the combined treatment with lipopolysaccharide (LPS) and platelet activating factor (PAF). Our study provided plasmatic signatures of immunoregulatory proteins in NEC and SIP infants, and demonstrated involvement of multiple functional pathways. The magnitude of changes in these proteins was significantly more extensive in NEC infants, reflecting the different nature of injury and/or severity of inflammation. We speculate that dysregulation of IL-6, Ang-2, IL-1RII and uPAR occurred at both systemic and cellular levels, and probably mediated via LPS and endogeneous PAF signals. Such exaggerated immunologic responses may account for the high morbidity and mortality in NEC compared with SIP patients

    Quantum optics in the phase space - A tutorial on Gaussian states

    Full text link
    In this tutorial, we introduce the basic concepts and mathematical tools needed for phase-space description of a very common class of states, whose phase properties are described by Gaussian Wigner functions: the Gaussian states. In particular, we address their manipulation, evolution and characterization in view of their application to quantum information.Comment: Tutorial. 23 pages, 1 figure. Updated version accepted for publication in EPJ - ST devoted to the memory of Federico Casagrand

    Bisdemethoxycurcumin Increases Sirt1 to Antagonize t

    Get PDF
    Curcuminoids are well known for their capabilities to combat risk factors that are associated with ageing and cellular senescence. Recent reports have demonstrated that curcuminoids can extend the lifespan of model organisms. However, the underlying mechanisms by which these polyphenic compounds exert these beneficial effects remain unknown. In this study, t-BHP-induced premature senescence model in human fibroblasts was chosen to explore the protective effects of a curcuminoid, bisdemethoxycurcumin (BDMC), on cellular senescence. The results demonstrated that BDMC attenuated oxidative stress-induced senescence-like features which include the induction of an enlarged cellular appearance, higher frequency of senescence-associated β-galactosidase staining activity, appearance of senescence-associated heterochromatic foci in nuclei, decrease in proliferation capability, and alteration in related molecules such as p16 and retinoblastoma protein. Notably, we found that BDMC treatment activated Sirt1/AMPK signaling pathway. Moreover, downregulating Sirt1 by the pharmacological inhibitor nicotianamine or small interfering RNA blocked BDMC-mediated protection against t-BHP-mediated decrease in proliferation. These results suggested that BDMC prevented t-BHP-induced cellular senescence, and BDMC-induced Sirt1 may be a mechanism mediating its beneficial effects
    corecore