5,322 research outputs found
Symmetry protected fractional Chern insulators and fractional topological insulators
In this paper we construct fully symmetric wavefunctions for the
spin-polarized fractional Chern insulators (FCI) and time-reversal-invariant
fractional topological insulators (FTI) in two dimensions using the parton
approach. We show that the lattice symmetry gives rise to many different FCI
and FTI phases even with the same filling fraction (and the same
quantized Hall conductance in FCI case). They have different
symmetry-protected topological orders, which are characterized by different
projective symmetry groups. We mainly focus on FCI phases which are realized in
a partially filled band with Chern number one. The low-energy gauge groups of a
generic FCI wavefunctions can be either or
the discrete group , and in the latter case the associated low-energy
physics are described by Chern-Simons-Higgs theories. We use our construction
to compute the ground state degeneracy. Examples of FCI/FTI wavefunctions on
honeycomb lattice and checkerboard lattice are explicitly given. Possible
non-Abelian FCI phases which may be realized in a partially filled band with
Chern number two are discussed. Generic FTI wavefunctions in the absence of
spin conservation are also presented whose low-energy gauge groups can be
either or . The constructed wavefunctions
also set up the framework for future variational Monte Carlo simulations.Comment: 24 pages, 13 figures, published versio
meson effects on neutron stars in the modified quark-meson coupling model
The properties of neutron stars are investigated by including meson
field in the Lagrangian density of modified quark-meson coupling model. The
population with meson is larger than that without
meson at the beginning, but it becomes smaller than that without meson
as the appearance of . The meson has opposite effects on
hadronic matter with or without hyperons: it softens the EOSes of hadronic
matter with hyperons, while it stiffens the EOSes of pure nucleonic matter.
Furthermore, the leptons and the hyperons have the similar influence on
meson effects. The meson increases the maximum masses of
neutron stars. The influence of on the meson effects
are also investigated.Comment: 10 pages, 6 figures, 4 table
Simulation Study on neutrino nucleus cross section measurement in Segmented Detector at Spallation Neutron Source
Knowledge of - differential cross sections
for energy below several tens of MeV scale is believed to be crucial in
understanding Supernova physics. In a segmented detector at Spallation Neutrino
Source, energy reconstructed from the electron range measurement is
strongly affected because of both multiple scattering and electromagnetic
showers occurring along the electron passage in target materials. In order to
estimate the effect, a simulation study has been performed with a cube block
model assuming a perfect tracking precision. The distortion of energy spectrum
is observed to be proportional to the atomic number of target material.
Feasibility of unfolding the distorted energy spectrum is studied for
both Fe and Pb cases. Evaluation of statistical accuracy attainable is
therefore provided for a segmented detector.Comment: 6 pages, 6 figures, submitted to Chinese Physics
An exo-cell assay for examining real-time γ-secretase activity and inhibition
γ-Secretase is an aspartyl protease that cleaves multiple substrates that are involved in broad biological processes ranging from stem cell development to neurodegeneration. The investigation of γ-secretase has been limited by currently available assays that require genetic or biochemical manipulation in the form of substrate transfection or membrane preparation. Here we report an exo-cell assay that is capable of characterizing γ-secretase activity in any cellular system without limitation. Using a highly active, recombinant substrate this assay can quickly and easily ascertain the status of γ-secretase activity in cell systems and patient samples. We have applied this method to determine the activity of γ-secretase in primary cell samples where transfection and/or membrane isolation are not viable options. Importantly, it allows for the detection of real time γ-secretase activity after inhibitor or drug treatment. The application of this assay to determine the role of γ-secretase in physiological and pathological conditions will greatly facilitate our characterization of this complex protease and help in the development and evaluation of γ-secretase-targeted therapies in Alzheimer's disease or a variety of neoplasms
A General SU(2) Formulation for Quantum Searching with Certainty
A general quantum search algorithm with arbitrary unitary transformations and
an arbitrary initial state is considered in this work. To serach a marked state
with certainty, we have derived, using an SU(2) representation: (1) the
matching condition relating the phase rotations in the algorithm, (2) a concise
formula for evaluating the required number of iterations for the search, and
(3) the final state after the search, with a phase angle in its amplitude of
unity modulus. Moreover, the optimal choices and modifications of the phase
angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure
A General Phase Matching Condition for Quantum Searching Algorithm
A general consideration on the phase rotations in quantum searching algorithm
is taken in this work. As four phase rotations on the initial state, the marked
states, and the states orthogonal to them are taken account, we deduce a phase
matching condition for a successful search. The optimal options for these phase
are obtained consequently.Comment: 3 pages, 3 figure
Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program
BACKGROUND: Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. RESULTS: We identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P < 0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P < 0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in young SOD2(+/- )and GPX4(+/- )mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. CONCLUSION: These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets
- …