10,681 research outputs found

    Determining a reasonable range of relative numerical tolerance values for simulating deterministic models of biochemical reactions

    Get PDF
    What values of relative numerical tolerance should be chosen in simulation of a deterministic model of a biochemical reaction is unclear, which impairs the modeling effort since the simulation outcomes of a model may depend on the relative numerical tolerance values. In an attempt to provide a guideline to selecting appropriate numerical tolerance values in simulation of in vivo biochemical reactions, reasonable numerical tolerance values were estimated based on the uncertainty principle and assumptions of related cellular parameters. The calculations indicate that relative numerical tolerance values can be reasonably set at or around 10^4 for the concentrations expressed in ng/L. This work also suggests that further reducing relative numerical values may result in erroneous simulation results.Plant Biology, Ecology, and Evolutio

    Possible Way to Synthesize Superheavy Element Z=117

    Full text link
    Within the framework of the dinuclear system model, the production of superheavy element Z=117 in possible projectile-target combinations is analyzed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed in this letter, such as the isotopes ^{248,249}Bk in ^{48}Ca induced reactions in 3n evaporation channels and the reactions ^{45}Sc+^{246,248}Cm in 3n and 4n channels, and the system ^{51}V+^{244}Pu in 3n channel.Comment: 10 pages, 4 figures, 1 tabl
    • …
    corecore