3,530 research outputs found

    Production of heavy isotopes in transfer reactions by collisions of 238^{238}U+238^{238}U

    Full text link
    The dynamics of transfer reactions in collisions of two very heavy nuclei 238^{238}U+238^{238}U is studied within the dinuclear system (DNS) model. Collisions of two actinide nuclei form a super heavy composite system during a very short time, in which a large number of charge and mass transfers may take place. Such reactions have been investigated experimentally as an alternative way for the production of heavy and superheavy nuclei. The role of collision orientation in the production cross sections of heavy nuclides is analyzed systematically. Calculations show that the cross sections decrease drastically with increasing the charged numbers of heavy fragments. The transfer mechanism is favorable to synthesize heavy neutron-rich isotopes, such as nuclei around the subclosure at N=162 from No (Z=102) to Db (Z=105).Comment: 4 pages, 4 figure

    Non-perturbative Dynamical Decoupling Control: A Spin Chain Model

    Full text link
    This paper considers a spin chain model by numerically solving the exact model to explore the non-perturbative dynamical decoupling regime, where an important issue arises recently (J. Jing, L.-A. Wu, J. Q. You and T. Yu, arXiv:1202.5056.). Our study has revealed a few universal features of non-perturbative dynamical control irrespective of the types of environments and system-environment couplings. We have shown that, for the spin chain model, there is a threshold and a large pulse parameter region where the effective dynamical control can be implemented, in contrast to the perturbative decoupling schemes where the permissible parameters are represented by a point or converge to a very small subset in the large parameter region admitted by our non-perturbative approach. An important implication of the non-perturbative approach is its flexibility in implementing the dynamical control scheme in a experimental setup. Our findings have exhibited several interesting features of the non-perturbative regimes such as the chain-size independence, pulse strength upper-bound, noncontinuous valid parameter regions, etc. Furthermore, we find that our non-perturbative scheme is robust against randomness in model fabrication and time-dependent random noise

    Differential measurement of atmospheric refraction with a telescope with double fields of view

    Full text link
    For the sake of complete theoretical research of atmospheric refraction, the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. In some engineering applications, the objects with larger zenith distance must be observed sometimes. Carrying out observational research of the atmospheric refraction at lower angles of elevation has an important significance. It has been considered difficult to measure the atmospheric refraction at lower angles of elevation. A new idea for determining atmospheric refraction by utilizing differential measurement with double fields of view is proposed. Taking the observational principle of HIPPARCOS satellite as a reference, a schematic prototype with double fields of view was developed. In August of 2013, experimental observations were carried out and the atmospheric refractions at lower angles of elevation can be obtained by the schematic prototype. The measured value of the atmospheric refraction at the zenith distance of 78.8 degree is 240.23"±0.27"240.23"\pm0.27", and the feasibility of differential measurement of atmospheric refraction with double fields of view was justified. The limitations of the schematic prototype such as inadequate ability of gathering light, lack of accurate meteorological data recording and lower automatic level of observation and data processing were also pointed out, which need to be improved in subsequent work.Comment: 10 pages, 6 figure
    • …
    corecore