813 research outputs found

    Learning Spatial-Aware Regressions for Visual Tracking

    Full text link
    In this paper, we analyze the spatial information of deep features, and propose two complementary regressions for robust visual tracking. First, we propose a kernelized ridge regression model wherein the kernel value is defined as the weighted sum of similarity scores of all pairs of patches between two samples. We show that this model can be formulated as a neural network and thus can be efficiently solved. Second, we propose a fully convolutional neural network with spatially regularized kernels, through which the filter kernel corresponding to each output channel is forced to focus on a specific region of the target. Distance transform pooling is further exploited to determine the effectiveness of each output channel of the convolution layer. The outputs from the kernelized ridge regression model and the fully convolutional neural network are combined to obtain the ultimate response. Experimental results on two benchmark datasets validate the effectiveness of the proposed method.Comment: To appear in CVPR201

    Romans Supergravity from Five-Dimensional Holograms

    Get PDF
    We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the conformal and flavor central charges can be extracted from the six-dimensional supergravity action, by carefully analyzing its embedding into type I' string theory. The results match on the two sides of the holographic duality. Our results also provide analytic evidence for the symmetry enhancement in five-dimensional superconformal field theories.Comment: 57 pages, 4 figures, 6 tables; v2: references adde
    • …
    corecore