251 research outputs found
ATP Released by Astrocytes Mediates Glutamatergic Activity-Dependent Heterosynaptic Suppression
AbstractExtracellular ATP released from axons is known to assist activity-dependent signaling between neurons and Schwann cells in the peripheral nervous system. Here we report that ATP released from astrocytes as a result of neuronal activity can also modulate central synaptic transmission. In cultures of hippocampal neurons, endogenously released ATP tonically suppresses glutamatergic synapses via presynaptic P2Y receptors, an effect that depends on the presence of cocultured astrocytes. Glutamate release accompanying neuronal activity also activates non-NMDA receptors of nearby astrocytes and triggers ATP release from these cells, which in turn causes homo- and heterosynaptic suppression. In CA1 pyramidal neurons of hippocampal slices, a similar synaptic suppression was also produced by adenosine, an immediate degradation product of ATP released by glial cells. Thus, neuron-glia crosstalk may participate in activity-dependent synaptic modulation
Pulsed laser deposition of hexagonal GaN-on-Si(100) template for MOCVD applications
Growth of hexagonal GaN on Si(100) templates via pulsed laser deposition (PLD) was investigated for the further development of GaN-on-Si technology. The evolution of the GaN growth mechanism at various growth times was monitored by SEM and TEM, which indicated that the GaN growth mode changes gradually from island growth to layer growth as the growth time increases up to 2 hours. Moreover, the high-temperature operation (1000°C) of the PLD meant no significant GaN meltback occurred on the GaN template surface. The completed GaN templates were subjected to MOCVD treatment to regrow a GaN layer. The results of X-ray diffraction analysis and photoluminescence measurements show not only the reliability of the GaN template, but also the promise of the PLD technique for the development of GaN-on-Si technology
Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function
<p>Abstract</p> <p>Background</p> <p>The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS) and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor <it>p27<sup>Kip1 </sup></it>(<it>p27 </it>or <it>Cdkn1b</it>) in the adult mouse and determined the outcome on retinal structure and function.</p> <p>Results</p> <p>p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal.</p> <p>Conclusion</p> <p>The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function.</p
Vulnerability of welders to manganese exposure--a neuroimaging study
Increased manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn exposure occurs in different occupational settings, where the airborne Mn level and the size of respirable particulates may vary considerably. Recently the importance of the role of the cerebral cortex in Mn toxicity has been highlighted, especially in Mn-induced neuropsychological effects. In this study we used magnetic resonance imaging (MRI) to evaluate brain Mn accumulation using T1 signal intensity indices and to examine changes in brain iron content using T2* contrast, as well as magnetic resonance spectroscopy (MRS) to measure exposure-induced metabolite changes non-invasively in cortical and deep brain regions in Mn-exposed welders, Mn-exposed smelter workers and control factory workers with no measurable exposure to Mn. MRS data as well as T1 signal intensity indices and T2* values were acquired from the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. Smelters were exposed to higher air Mn levels and had a longer duration of exposure, which was reflected in higher Mn levels in erythrocytes and urine than in welders. Nonetheless, welders had more significant metabolic differences compared to controls than did the smelter workers, especially in the frontal cortex. T1 hyperintensities in the globus pallidus were observed in both Mn-exposed groups, but only welders showed significantly higher thalamic and hippocampal T1 hyperintensities, as well as significantly reduced T2* values in the frontal cortex. Our results indicate that (1) the cerebral cortex, in particular the frontal cortex, is clearly involved in Mn neurotoxic effects and (2) in spite of the lower air Mn levels and shorter duration of exposure, welders exhibit more extensive neuroimaging changes compared to controls than smelters, including measurable deposition of Mn in more brain areas. These results indicate that the type of exposure (particulate sizes, dust versus fume) and route of exposure play an important role in the extent of Mn-induced toxic effects on the brain
Dual Targeted Extracellular Vesicles Regulate Oncogenic Genes in Advanced Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours
miRTarBase: a database curates experimentally validated microRNA–target interactions
MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles
Dephosphorylation of Nucleophosmin by PP1β Facilitates pRB Binding and Consequent E2F1-dependent DNA Repair
We report a new pathway through which PP1β signals to nucleophosmin (NPM) in response to DNA damage. UV induces dephosphorylation of NPM at multiple sites, leading to enhancement of complex formation between NPM and retinoblastoma tumor suppressor protein and the subsequent upregulation of E2F1. Consequently, such signaling pathway potentiates the cellular DNA repair capacity
Meeting the cultural and service needs of Arabic international students by using QFD
Quality has become an important factor in global competition for many reasons. Intensive global competition and the demand for better quality by customers has led organizations to realize the benefits of providing quality products and services in order to successfully compete and survive. Higher education institutions are one example of these organisations. Higher education institutions work in an intensive competitive environment worldwide driven by increasing demands for learning by local and international students. As a result, the managers of these sectors have realized that improving the quality of services is important for achieving customer satisfaction which can help survival in an internationally competitive market. To do this, it is necessary for organizations to know their customers and identify their requirements. To this end, many higher education institutions have adopted principles of total quality management (TQM) to improve their education quality which leads to better performance through involvement of every department to achieve excellence in business. This chapter considers the importance of measuring quality in order to assist universities to proactively manage the design and improvement of the social and academic experiences of postgraduate international students, and plan management decision-making processes to deliver high-quality services in a globalized business of provision of higher education. Higher education institutions must operate effectively and efficiently and be able to deliver quality programs, by seeking to better understand the needs of their customers to be competitive in this market space
- …