7,455 research outputs found
Higgs amplitude mode in massless Dirac fermion systems
The Higgs amplitude mode in superconductors is the condensed matter analogy
of Higgs bosons in particle physics. We investigate the time evolution of Higgs
amplitude mode in massless Dirac systems, induced by a weak quench of an
attractive interaction. We find that the Higgs amplitude mode in the
half-filling honeycomb lattice has a logarithmic decaying behaviour,
qualitatively different from the decay in the normal
superconductors. Our study is also extended to the doped cases in honeycomb
lattice. As for the 3D Dirac semimetal at half filling, we obtain an undamped
oscillation of the amplitude mode. Our finding is not only an important
supplement to the previous theoretical studies on normal fermion systems, but
also provide an experimental signature to characterize the superconductivity in
2D or 3D Dirac systems.Comment: 6 pages, 8 figure
Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach
First-principles density-functional calculations are performed to investigate
the thermal transport properties in graphene nanoribbons (GNRs). The
dimensional crossover of thermal conductance from one to two dimensions (2D) is
clearly demonstrated with increasing ribbon width. The thermal conductance of
GNRs in a few nanometer width already exhibits an approximate low-temperature
dependence of , like that of 2D graphene sheet which is attributed to
the quadratic nature of dispersion relation for the out-of-plane acoustic
phonon modes. Using a zone-folding method, we heuristically derive the
dimensional crossover of thermal conductance with the increase of ribbon width.
Combining our calculations with the experimental phonon mean-free path, some
typical values of thermal conductivity at room temperature are estimated for
GNRs and for 2D graphene sheet, respectively. Our findings clarify the issue of
low-temperature dependence of thermal transport in GNRs and suggest a
calibration range of thermal conductivity for experimental measurements in
graphene-based materials.Comment: 18 pages, 4 figure
Optimal measurements to access classical correlations of two-qubit states
We analyze the optimal measurements accessing classical correlations in
arbitrary two-qubit states. Two-qubit states can be transformed into the
canonical forms via local unitary operations. For the canonical forms, we
investigate the probability distribution of the optimal measurements. The
probability distribution of the optimal measurement is found to be centralized
in the vicinity of a specific von Neumann measurement, which we call the
maximal-correlation-direction measurement (MCDM). We prove that for the states
with zero-discord and maximally mixed marginals, the MCDM is the very optimal
measurement. Furthermore, we give an upper bound of quantum discord based on
the MCDM, and investigate its performance for approximating the quantum
discord.Comment: 8 pages, 3 figures, version accepted by Phys. Rev.
TNFRSF11B computational development network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients
<p>Abstract</p> <p>Background</p> <p><it>TNFRSF11B </it>computational development network construction and analysis of frontal cortex of HIV encephalitis (HIVE) is very useful to identify novel markers and potential targets for prognosis and therapy.</p> <p>Methods</p> <p>By integration of gene regulatory network infer (GRNInfer) and the database for annotation, visualization and integrated discovery (DAVID) we identified and constructed significant molecule <it>TNFRSF11B </it>development network from 12 frontal cortex of HIVE-control patients and 16 HIVE in the same GEO Dataset GDS1726.</p> <p>Results</p> <p>Our result verified <it>TNFRSF11B </it>developmental process only in the downstream of frontal cortex of HIVE-control patients (<it>BST2, DGKG, GAS1, PDCD4, TGFBR3, VEZF1 </it>inhibition), whereas in the upstream of frontal cortex of HIVE (<it>DGKG, PDCD4 </it>activation) and downstream (<it>CFDP1, DGKG, GAS1, PAX6 </it>activation; <it>BST2, PDCD4, TGFBR3, VEZF1 </it>inhibition). Importantly, we datamined that <it>TNFRSF11B </it>development cluster of HIVE is involved in T-cell mediated immunity, cell projection organization and cell motion (only in HIVE terms) without apoptosis, plasma membrane and kinase activity (only in HIVE-control patients terms), the condition is vital to inflammation, brain morphology and cognition impairment of HIVE. Our result demonstrated that common terms in both HIVE-control patients and HIVE include developmental process, signal transduction, negative regulation of cell proliferation, RNA-binding, zinc-finger, cell development, positive regulation of biological process and cell differentiation.</p> <p>Conclusions</p> <p>We deduced the stronger <it>TNFRSF11B </it>development network in HIVE consistent with our number computation. It would be necessary of the stronger <it>TNFRSF11B </it>development function to inflammation, brain morphology and cognition of HIVE.</p
Characterization of cell cycle phase-based microRNAs in pluripotency and differentiation
published_or_final_versio
Exploring multipartite quantum correlations with the square of quantum discord
We explore the quantum correlation distribution in multipartite quantum
states based on the square of quantum discord (SQD). For tripartite quantum
systems, we derive the necessary and sufficient condition for the SQD to
satisfy the monogamy relation. Particularly, we prove that the SQD is
monogamous for three-qubit pure states, based on which a genuine tripartite
quantum correlation measure is introduced. In addition, we also address the
quantum correlation distributions in four-qubit pure states. As an example, we
investigate multipartite quantum correlations in the dynamical evolution of
multipartite cavity-reservoir systems.Comment: 8 pages, 5 figure
Optical generation of hybrid entangled state via entangling single-photon-added coherent state
We propose a feasible scheme to realize the optical entanglement of
single-photon-added coherent state (SPACS) and show that, besides the Sanders
entangled coherent state, the entangled SPACS also leads to new forms of hybrid
entanglement of quantum Fock state and classical coherent state. We probe the
essential difference of two types of hybrid entangled state (HES). This HES
provides a novel link between the discrete- and the continuous-variable
entanglement in a natural way.Comment: 6 pages, 2 figure
Collapses and revivals of exciton emission in a semiconductor microcavity: detuning and phase-space filling effects
We investigate exciton emission of quantum well embedded in a semiconductor
microcavity. The analytical expressions of the light intensity for the cases of
excitonic number state and coherent state are presented by using secular
approximation. Our results show that the effective exciton-exciton interaction
leads to the appearance of collapse and revival of the light intensity. The
revival time is twice compared the coherent state case with that of the number
state. The dissipation of the exciton-polariton lowers the revival amplitude
but does not alter the revival time. The influences of the detuning and the
phase-space filling are studied. We find that the effect of the higher-order
exciton-photon interaction may be removed by adjusting the detuning.Comment: 7 pages, 3 figure
- …