13 research outputs found

    A new paradigm of neuromuscular electrical stimulation for the quadriceps femoris muscle.

    No full text
    PURPOSE: Neuromuscular electrical stimulation (NMES) with large electrodes and multiple current pathways (m-NMES) has recently been proposed as a valid alternative to conventional NMES (c-NMES) for quadriceps muscle (re)training. The main aim of this study was to compare discomfort, evoked force and fatigue between m-NMES and c-NMES of the quadriceps femoris muscle in healthy subjects. METHODS: Ten healthy subjects completed two experimental sessions (c-NMES and m-NMES), that were randomly presented in a cross-over design. Maximal electrically evoked force at pain threshold, self-reported discomfort at different levels of evoked force, and fatigue-induced force declines during and following a series of 20 NMES contractions were compared between c-NMES and m-NMES. RESULTS: m-NMES resulted in greater evoked force (P < 0.05) and lower discomfort in comparison to c-NMES (P < 0.05-0.001), but fatigue time course and magnitude did not differ between the two conditions. CONCLUSIONS: The use of quadriceps m-NMES appears legitimate for (re)training purposes because it generated stronger contractions and was less discomfortable than c-NMES (due to multiple current pathways and/or lower current density with larger electrodes)

    Muscle echo intensity: reliability and conditioning factors

    No full text
    Objective: To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods: Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. Results: We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 054) to high (ICC: 086) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 042) to very high (091). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. Conclusion: The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat

    Spinal involvement and muscle cramps in electrically elicited muscle contractions

    No full text
    Electrical stimulation of innervated muscles has been investigated for many decades with alternations of high and low clinical interest in the fields of rehabilitation medicine and sports sciences. Early work demonstrated that afferent fibers have lower thresholds and are usually activated first (therefore eliciting an H-reflex). In the case of nerve trunk stimulation, the order of recruitment is mostly conditioned by the axonal dimension and excitability threshold. In the case of muscle motor point stimulation, the spatial distribution of nerve branches plays a predominant role. Sustained stimulation produces a progressive increase of force that is often maintained in subsequent voluntary activation by stroke patients. This observation suggested a facilitation mechanism at the spinal and/or supraspinal level. Such facilitation has been observed in healthy subjects as well, and may explain the generation of cramps elicited during stimulation and sustained for dozens of seconds after the stimulation has been interrupted. The most recent interpretations of facilitation resulting from peripheral stimulation focused on presynaptic (potentiation of neurotransmitter release from afferent fibers) or postsynaptic (generation of "persistent inward currents" in spinal motor neurons or interneurons) mechanisms. The renewed attention to these phenomena is once more increasing the interest toward electrical stimulation of the neuromuscular system. This is an opportunity for a structured investigation of the field aimed to resolving elements of confusion and controversy that still plague this area of electrophysiolog

    Assessment of quadriceps muscle inactivation with a new electrical stimulation paradigm.

    No full text
    INTRODUCTION: In this study we evaluated the validity of garment-based quadriceps stimulation (GQS) for assessment of muscle inactivation in comparison with femoral nerve stimulation (FNS). METHODS: Inactivation estimates (superimposed doublet torque), self-reported discomfort, and twitch and doublet contractile properties were compared between GQS and FNS in 15 healthy subjects. RESULTS: Superimposed doublet torque was significantly lower for GQS than for FNS at 20% and 40% maximum voluntary contraction (MVC) (P < 0.01), but not at 60%, 80%, and 100% MVC. Discomfort scores were systematically lower for GQS than for FNS (P < 0.05). Resting twitch and doublet peak torque were lower for GQS, and time to peak torque was shorter for GQS than for FNS (P < 0.01). CONCLUSIONS: GQS can be used with confidence for straightforward evaluation of quadriceps muscle inactivation, whereas its validity for assessment of contractile properties remains to be determined. Muscle Nerve 51: 117-124, 2015

    Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking?

    No full text
    The clinical success of neuromuscular electrical stimulation (NMES) for neuromuscular rehabilitation is greatly compromised by the poor consideration of different physiological and methodological issues that are not always obvious to the clinicians. Therefore, the aim of this narrative review is to reexamine some of these fundamental aspects of NMES using a tripartite model perspective. First, we contend that NMES does not actually bypass the central nervous system but results in a multitude of neurally mediated responses that contribute substantially to force generation and may engender neural adaptations. Second, we argue that too much emphasis is generally placed on externally controllable stimulation parameters while the major determinant of NMES effectiveness is the intrinsically determined muscle tension generated by the current (ie, evoked force). Third, we believe that a more systematic approach to NMES therapy is required in the clinic and this implies a better identification of the patient-specific impairment and of the potential "responders" to NMES therapy. On the basis of these considerations, we suggest that the crucial steps to ensure the clinical effectiveness of NMES treatment should consist of (1) identifying the neuromuscular impairment with clinical assessment and (2) implementing algorithm-based NMES therapy while (3) properly dosing the treatment with tension-controlled NMES and eventually amplifying its neural effects

    Interleukin-6 response to isokinetic exercise in elite athletes: relationships to adrenocortical function and to mechanical and myoelectric fatigue.

    No full text
    Exercise stimulates the release of interleukin-6 (IL-6). Aims of the study were to: (a) analyse the IL-6 response to exercise in power (n = 7) and endurance athletes (n = 13); (b) determine the effects of the IL-6 production on mechanical and myoelectric fatigue; (c) evaluate the relationship between IL-6 and adrenocortical responses. EMG variables (conduction velocity, mean power frequency, average rectified value), ACTH, cortisol, DHEA, IL-6, myoglobin, and lactate were analysed before and after an isokinetic exercise. The exercise elicited significant mechanical and myoelectric fatigue as well as significant biochemical responses. Power athletes showed IL-6 and lactate responses higher than endurance athletes. The correlation analyses showed that the greater the mechanical fatigue, the greater the increases in lactate and IL-6. No correlations were found between IL-6 and EMG variables. No relationships were found between IL-6 and cortisol, after correction for ACTH levels. In conclusion, the muscular IL-6 production, as inferred by its circulating levels, had no detectable effects on the myoelectric manifestations of fatigue and the cortisol response to exercise was not related to the amount of circulating IL-6, but only to the activation of ACTH secretion
    corecore