349 research outputs found

    Autonomous Drones in GNSS-Denied Environments: Results from the Leonardo Drone Contest

    Get PDF
    The Leonardo Drone Contest is an autonomous drone competition that aims at finding innovative solutions for drones operating in a Global Navigation Satellite System (GNSS) denied environment. At the end of a three years cycle of the competition, in this paper a review of the identified system and conclusions made by the DRAFT team from Politecnico di Torino is presented. The authors aim at introducing the final solutions to the challenge in terms of hardware components, algorithms and development process. The proposed approach has been widely tested and validated, and it ranked second in the competition. The well-consolidated procedure, resulting from many iterations in the development cycle, has contributed to further improvements during the three-year challenge and can be helpful for anyone who desires to approach the problem of autonomous drones employed in smart cities contexts

    Vineyard establishment under exacerbated summer stress: effects of mycorrhization on rootstock agronomical parameters, leaf element composition and root-associated bacterial microbiota

    Get PDF
    Aims Climate change imposes adaptation of viticulture in risk areas, such as the Mediterranean. Mycorrhization is a valid tool to reduce the impact of the expected temperature/drought increase. Aim of this work was to test the effects of mycorrhization on grapevine vegetative growth, element composition of soil/leaves, and microbiota of bulk soil/rhizosphere/endorhiza, in the field, under exacerbated summer stress conditions obtained by planting the rootstocks in June. Methods 118 rooted cuttings of 1103-Paulsen (Vitis berlandieri × Vitis rupestris) were planted in Salento (Apulia, Southern Italy); about half of them were mycorrhized. Leaf Area Index, shoot growth and survival rate were monitored across two growing seasons. Leaf/shoot weight, chemical analysis of 25 elements, and 16S rRNA gene metabarcoding of bulk soil/rhizosphere/endorhiza were performed on subsamples. Results Mycorrhized plants showed significantly higher survival rate and growth, and accumulated significantly higher amounts of 18 elements. 27 endorhizal OTUs (representing ~20% of total sequences) were differently distributed (20 OTUs more abundant in mycorrhized plants); in the rhizosphere, instead, 12 OTUs (~2.5% of total sequences) were differently distributed. A few Actinobacterial OTUs were enriched by mycorrhization in the root endosphere; the same OTUs were the most correlated with the chemical elements, suggesting a role in element dynamics. These OTUs were not hub taxa of the co-occurrence network. Conclusions This work shed light onto the interactions between mycorrhiza and microbiome, in the context of plant element dynamics, which is useful to identify potential target candidates for biotechnological applications, thus moving towards a more sustainable, ecosystem-based viticulture
    • …
    corecore