134 research outputs found
Low-Velocity Streams in the Solar Neighborhood Caused by the Galactic Bar
We find that a steady state bar induces transient features at low velocities
in the solar neighborhood velocity distribution due to the initial response of
the disc, following the formation of the bar. We associate these velocity
streams with two quasi-periodic orbital families, librating around the stable
x_1(1) and x_1(2) orbits near the bar's outer Lindblad resonance (OLR). In a
reference frame moving with the bar, these otherwise stationary orbits precess
on a timescale dependent on the strength of the bar, consistent with
predictions from a simple Hamiltonian model for the resonance. This behavior
allows the two orbital families to reach the solar neighborhood and manifest
themselves as clumps in the u-v plane moving away from (x_1(2)), and toward
(x_1(1)) the Galactic center. Depending on the bar parameters and time since
its formation, this model is consistent with the Pleiades and Coma Berenices,
or Pleiades and Sirius moving groups seen in the Hipparcos stellar velocity
distribution, if the Milky Way bar angle is 30<phi_0<45 [deg] and its pattern
speed is Omega_b/Omega_0=1.82\pm 0.07, where Omega_0 is the angular velocity of
the local standard of rest (LSR). Since the process is recurrent, we can
achieve a good match about every six LSR rotations. However, to be consistent
with the fraction of stars in the Pleiades, we estimate that the Milky Way bar
formed ~2 Gyr ago. This model argues against a common dynamical origin for the
Hyades and Pleiades moving groups.Comment: 9 pages, 8 figures, Accepted for publication in MNRAS with minor
revision
Is the Milky Way ringing? The hunt for high velocity streams
We perform numerical simulations of a stellar galactic disk with initial
conditions chosen to represent an unrelaxed population which might have been
left following a merger. Stars are unevenly distributed in radial action angle,
though the disk is axisymmetric. The velocity distribution in the simulated
Solar neighborhood exhibits waves traveling in the direction of positive v,
where u,v are the radial and tangential velocity components. As the system
relaxes and structure wraps in phase space, the features seen in the uv-plane
move closer together. We show that these results can be obtained also by a
semi-analytical method. We propose that this model could provide an explanation
for the high velocity streams seen in the Solar neighborhood at approximate v
in km/s, of -60 (HR 1614), -80 (Arifyanto and Fuchs 2006), -100 (Arcturus), and
-160 (Klement et al. 2008). In addition, we predict four new features at v ~
-140, -120, 40 and 60 km/s. By matching the number and positions of the
observed streams, we estimate that the Milky Way disk was strongly perturbed
~1.9 Gyr ago. This event could have been associated with Galactic bar
formation.Comment: 5 pages, 4 figures, Accepted to MNRAS Letters, added reference
Constraints on the Galactic bar from the Hercules stream as traced with RAVE across the Galaxy
Non-axisymmetries in the Galactic potential (spiral arms and bar) induce kinematic groups such as the Hercules stream. Assuming that Hercules is caused by the effects of the outer Lindblad resonance of the Galactic bar, we model analytically its properties as a function of position in the Galaxy and its dependence on the bar's pattern speed and orientation. Using data from the RAVE survey we find that the azimuthal velocity of the Hercules structure decreases as a function of Galactocentric radius, in a manner consistent with our analytical model. This allows us to obtain new estimates of the parameters of the Milky Way's bar. The combined likelihood function of the bar's pattern speed and angle has its maximum for a pattern speed of Omega(b) = (1.89 +/- 0.08) x Omega(0), where Omega(0) is the local circular frequency. Assuming a solar radius of 8.05 kpc and a local circular velocity of 238 km s(-1), this corresponds to Omega(b) = 56 +/- 2km s(-1) kpc(-1). On the other hand, the bar's orientation phi(b) cannot be constrained with the available data. In fact, the likelihood function shows that a tight correlation exists between the pattern speed and the orientation, implying that a better description of our best fit results is given by the linear relation Omega(b)/Omega(0) = 1.91+0.0044 (phi(b)(deg) - 48), with standard deviation of 0.02. For example, for an angle of phi(b) = 30 deg the pattern speed is 54.0 +/- 0.5 km s(-1) kpc(-1). These results are not very sensitive to the other Galactic parameters such as the circular velocity curve or the peculiar motion of the Sun, and are robust to biases in distance
The properties of the local spiral arms from RAVE data: two-dimensional density wave approach
Using the RAVE survey, we recently brought to light a gradient in the mean
galactocentric radial velocity of stars in the extended solar neighbourhood.
This gradient likely originates from non-axisymmetric perturbations of the
potential, among which a perturbation by spiral arms is a possible explanation.
Here, we apply the traditional density wave theory and analytically model the
radial component of the two-dimensional velocity field. Provided that the
radial velocity gradient is caused by relatively long-lived spiral arms that
can affect stars substantially above the plane, this analytic model provides
new independent estimates for the parameters of the Milky Way spiral structure.
Our analysis favours a two-armed perturbation with the Sun close to the inner
ultra-harmonic 4:1 resonance, with a pattern speed \Omega_p=18.6^{+0.3}_{-0.2}
km/s/kpc and a small amplitude A=0.55 \pm 0.02% of the background potential
(14% of the background density). This model can serve as a basis for numerical
simulations in three dimensions, additionally including a possible influence of
the galactic bar and/or other non-axisymmetric modes.Comment: 9 pages, 4 figures, accepted for publication in MNRA
Chemical gradients in the Milky Way from the RAVE data
Aims. We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Thanks to the large number of stars of our RAVE sample we can study how the gradients vary as function of the distance from the Galactic plane.
Methods. We analysed three different samples selected from three independent datasets: a sample of 19 962 dwarf stars selected from the RAVE database, a sample of 10 616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. The three samples were analysed by using the very same method for comparison purposes. We integrated the Galactic orbits and obtained the guiding radii (R-g) and the maximum distances from the Galactic plane reached by the stars along their orbits (Z(max)). We measured the chemical gradients as functions of R-g at different Z(max).
Results. We found that the chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Z(max) < 0.4 kpc and 4.5 < R-g(kpc) < 9.5, the iron gradient for the RAVE sample is d[Fe/H]/dR(g) = -0.065 dex kpc(-1), whereas for the GCS sample it is d[Fe/H]/dR(g) = -0.043 dex kpc(-1) with internal errors of +/-0.002 and +/-0.004 dex kpc(-1), respectively. The gradients of the RAVE and GCS samples become flatter at larger Z(max). Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dR(g) = +0.053 +/- 0.003 dex kpc(-1) at Z(max) < 0.4 kpc and remains positive at any Z(max). These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. In addition, the low metallicity and asymmetric drift of the thick disc causes a shift of the stars towards lower R-g and metallicity which, together with the thin-disc stars with a higher metallicity and R-g, generates a fictitious positive gradient of the full sample. The flatter gradient at larger Z(max) found in the RAVE and the GCS samples may therefore be due to the superposition of thin-and thick-disc stars, which mimicks a flatter or positive gradient. This does not exclude the possibility that the thick disc has no chemical gradient. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density; ii) decreasing the vertical velocity; and iii) increasing the metallicity of the thick disc in the Besancon model
4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)
The mechanisms of the formation and evolution of the Milky Way are encoded in
the orbits, chemistry and ages of its stars. With the 4MOST MIlky way Disk And
BuLgE Low-Resolution Survey (4MIDABLE-LR) we aim to study kinematic and
chemical substructures in the Milky Way disc and bulge region with samples of
unprecedented size out to larger distances and greater precision than
conceivable with Gaia alone or any other ongoing or planned survey. Gaia gives
us the unique opportunity for target selection based almost entirely on
parallax and magnitude range, hence increasing the efficiency in sampling
larger Milky Way volumes with well-defined and effective selection functions.
Our main goal is to provide a detailed chrono-chemo-kinematical extended map of
our Galaxy and the largest Gaia follow-up down to magnitudes (Vega).
The complex nature of the disc components (for example, large target densities
and highly structured extinction distribution in the Milky Way bulge and disc
area), prompted us to develop a survey strategy with five main sub-surveys that
are tailored to answer the still open questions about the assembly and
evolution of our Galaxy, while taking full advantage of the Gaia data.Comment: Part of the 4MOST issue of The Messenger, published in preparation of
4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm
Asteroseismology of red giants & galactic archaeology
Red-giant stars are low- to intermediate-mass (~M)
stars that have exhausted hydrogen in the core. These extended, cool and hence
red stars are key targets for stellar evolution studies as well as galactic
studies for several reasons: a) many stars go through a red-giant phase; b) red
giants are intrinsically bright; c) large stellar internal structure changes as
well as changes in surface chemical abundances take place over relatively short
time; d) red-giant stars exhibit global intrinsic oscillations. Due to their
large number and intrinsic brightness it is possible to observe many of these
stars up to large distances. Furthermore, the global intrinsic oscillations
provide a means to discern red-giant stars in the pre-helium core burning from
the ones in the helium core burning phase and provide an estimate of stellar
ages, a key ingredient for galactic studies. In this lecture I will first
discuss some physical phenomena that play a role in red-giant stars and several
phases of red-giant evolution. Then, I will provide some details about
asteroseismology -- the study of the internal structure of stars through their
intrinsic oscillations -- of red-giant stars. I will conclude by discussing
galactic archaeology -- the study of the formation and evolution of the Milky
Way by reconstructing its past from its current constituents -- and the role
red-giant stars can play in that.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
4MOST Consortium Survey 4: Milky Way Disc and Bulge High-Resolution Survey (4MIDABLE-HR)
The signatures of the formation and evolution of a galaxy are imprinted in
its stars. Their velocities, ages, and chemical compositions present major
constraints on models of galaxy formation, and on various processes such as the
gas inflows and outflows, the accretion of cold gas, radial migration, and the
variability of star formation activity. Understanding the evolution of the
Milky Way requires large observational datasets of stars via which these
quantities can be determined accurately. This is the science driver of the
4MOST MIlky way Disc And BuLgE High-Resolution (4MIDABLE-HR) survey: to obtain
high-resolution spectra at and to provide detailed elemental
abundances for large samples of stars in the Galactic disc and bulge. High data
quality will allow us to provide accurate spectroscopic diagnostics of two
million stellar spectra: precise radial velocities; rotation; abundances of
many elements, including those that are currently only accessible in the
optical, such as Li, s-, and r-process; and multi-epoch spectra for a
sub-sample of stars. Synergies with complementary missions like Gaia and TESS
will provide masses, stellar ages and multiplicity, forming a multi-dimensional
dataset that will allow us to explore and constrain the origin and structure of
the Milky Way.Comment: Part of the 4MOST issue of The Messenger, published in preparation of
4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm
Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars
We employ the first two years of data from the near-infrared, high-resolution
SDSS-III/APOGEE spectroscopic survey to investigate the distribution of
metallicity and alpha-element abundances of stars over a large part of the
Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump
stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H]
distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate
metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the
two sequences smoothly merge. We investigate the effects of the APOGEE
selection function and volume filling fraction and find that these have little
qualitative impact on the alpha-element abundance patterns. The described
abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc
across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is
surprisingly constant throughout the Galaxy, with little variation from region
to region (~10%). Using simple galactic chemical evolution models we derive an
average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10
1/yr, which is quite close to the nearly-constant value found in
molecular-gas-dominated regions of nearby spirals. This result suggests that
the early evolution of the Milky Way disk was characterized by stars that
shared a similar star formation history and were formed in a well-mixed,
turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE)
of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy
can be explained by a single chemical evolutionary track this cannot hold in
the outer Galaxy, requiring instead a mix of two or more populations with
distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap
- …