433 research outputs found

    Lower Bounds on the Ground State Entropy of the Potts Antiferromagnet on Slabs of the Simple Cubic Lattice

    Full text link
    We calculate rigorous lower bounds for the ground state degeneracy per site, WW, of the qq-state Potts antiferromagnet on slabs of the simple cubic lattice that are infinite in two directions and finite in the third and that thus interpolate between the square (sq) and simple cubic (sc) lattices. We give a comparison with large-qq series expansions for the sq and sc lattices and also present numerical comparisons.Comment: 7 pages, late

    Survival of interacting Brownian particles in crowded 1D environment

    Full text link
    We investigate a diffusive motion of a system of interacting Brownian particles in quasi-one-dimensional micropores. In particular, we consider a semi-infinite 1D geometry with a partially absorbing boundary and the hard-core inter-particle interaction. Due to the absorbing boundary the number of particles in the pore gradually decreases. We present the exact analytical solution of the problem. Our procedure merely requires the knowledge of the corresponding single-particle problem. First, we calculate the simultaneous probability density of having still a definite number NkN-k of surviving particles at definite coordinates. Focusing on an arbitrary tagged particle, we derive the exact probability density of its coordinate. Secondly, we present a complete probabilistic description of the emerging escape process. The survival probabilities for the individual particles are calculated, the first and the second moments of the exit times are discussed. Generally speaking, although the original inter-particle interaction possesses a point-like character, it induces entropic repulsive forces which, e.g., push the leftmost (rightmost) particle towards (opposite) the absorbing boundary thereby accelerating (decelerating) its escape. More importantly, as compared to the reference problem for the non-interacting particles, the interaction changes the dynamical exponents which characterize the long-time asymptotic dynamics. Interesting new insights emerge after we interpret our model in terms of a) diffusion of a single particle in a NN-dimensional space, and b) order statistics defined on a system of NN independent, identically distributed random variables

    Matrix permanent and quantum entanglement of permutation invariant states

    Full text link
    We point out that a geometric measure of quantum entanglement is related to the matrix permanent when restricted to permutation invariant states. This connection allows us to interpret the permanent as an angle between vectors. By employing a recently introduced permanent inequality by Carlen, Loss and Lieb, we can prove explicit formulas of the geometric measure for permutation invariant basis states in a simple way.Comment: 10 page

    Two-dimensional symmetric and antisymmetric generalizations of exponential and cosine functions

    Full text link
    Properties of the four families of recently introduced special functions of two real variables, denoted here by E±E^\pm, and cos±\cos^\pm, are studied. The superscripts +^+ and ^- refer to the symmetric and antisymmetric functions respectively. The functions are considered in all details required for their exploitation in Fourier expansions of digital data, sampled on square grids of any density and for general position of the grid in the real plane relative to the lattice defined by the underlying group theory. Quality of continuous interpolation, resulting from the discrete expansions, is studied, exemplified and compared for some model functions.Comment: 22 pages, 10 figure

    Asymptotic Expansions for lambda_d of the Dimer and Monomer-Dimer Problems

    Full text link
    In the past few years we have derived asymptotic expansions for lambda_d of the dimer problem and lambda_d(p) of the monomer-dimer problem. The many expansions so far computed are collected herein. We shine a light on results in two dimensions inspired by the work of M. E. Fisher. Much of the work reported here was joint with Shmuel Friedland.Comment: 4 page

    Approximating the monomer-dimer constants through matrix permanent

    Full text link
    The monomer-dimer model is fundamental in statistical mechanics. However, it is #P-complete in computation, even for two dimensional problems. A formulation in matrix permanent for the partition function of the monomer-dimer model is proposed in this paper, by transforming the number of all matchings of a bipartite graph into the number of perfect matchings of an extended bipartite graph, which can be given by a matrix permanent. Sequential importance sampling algorithm is applied to compute the permanents. For two-dimensional lattice with periodic condition, we obtain 0.6627±0.0002 0.6627\pm0.0002, where the exact value is h2=0.662798972834h_2=0.662798972834. For three-dimensional lattice with periodic condition, our numerical result is 0.7847±0.0014 0.7847\pm0.0014, {which agrees with the best known bound 0.7653h30.78620.7653 \leq h_3 \leq 0.7862.}Comment: 6 pages, 2 figure

    Three variable exponential functions of the alternating group

    Full text link
    New class of special functions of three real variables, based on the alternating subgroup of the permutation group S3S_3, is studied. These functions are used for Fourier-like expansion of digital data given on lattice of any density and general position. Such functions have only trivial analogs in one and two variables; a connection to the EE-functions of C3C_3 is shown. Continuous interpolation of the three dimensional data is studied and exemplified.Comment: 10 pages, 3 figure

    Probabilities in the inflationary multiverse

    Full text link
    Inflationary cosmology leads to the picture of a "multiverse," involving an infinite number of (spatially infinite) post-inflationary thermalized regions, called pocket universes. In the context of theories with many vacua, such as the landscape of string theory, the effective constants of Nature are randomized by quantum processes during inflation. We discuss an analytic estimate for the volume distribution of the constants within each pocket universe. This is based on the conjecture that the field distribution is approximately ergodic in the diffusion regime, when the dynamics of the fields is dominated by quantum fluctuations (rather than by the classical drift). We then propose a method for determining the relative abundances of different types of pocket universes. Both ingredients are combined into an expression for the distribution of the constants in pocket universes of all types.Comment: 18 pages, RevTeX 4, 2 figures. Discussion of the full probability in Sec.VI is sharpened; the conclusions are strengthened. Note added explaining the relation to recent work by Easther, Lim and Martin. Some references adde

    Reconstructing sparticle mass spectra using hadronic decays

    Get PDF
    Most sparticle decay cascades envisaged at the Large Hadron Collider (LHC) involve hadronic decays of intermediate particles. We use state-of-the art techniques based on the K⊥ jet algorithm to reconstruct the resulting hadronic final states for simulated LHC events in a number of benchmark supersymmetric scenarios. In particular, we show that a general method of selecting preferentially boosted massive particles such as W±, Z0 or Higgs bosons decaying to jets, using sub-jets found by the K⊥ algorithm, suppresses QCD backgrounds and thereby enhances the observability of signals that would otherwise be indistinct. Consequently, measurements of the supersymmetric mass spectrum at the per-cent level can be obtained from cascades including the hadronic decays of such massive intermediate bosons
    corecore