64 research outputs found

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    de Sitter Thick Brane Solution in Weyl Geometry

    Full text link
    In this paper, we consider a de Sitter thick brane model in a pure geometric Weyl integrable five-dimensional space-time, which is a generalization of Riemann geometry and is invariant under a so-called Weyl rescaling. We find a solution of this model via performing a conformal transformation to map the Weylian structure into a familiar Riemannian one with a conformal metric. The metric perturbations of the model are discussed. For gravitational perturbation, we get the effective modified Po¨\ddot{\text{o}}schl-Teller potential in corresponding Schro¨\ddot{\text{o}}dinger equation for Kaluza-Klein (KK) modes of the graviton. There is only one bound state, which is a normalizable massless zero mode and represents a stable 4-dimensional graviton. Furthermore, there exists a mass gap between the massless mode and continuous KK modes. We also find that the model is stable under the scalar perturbation in the metric. The correction to the Newtonian potential on the brane is proportional to e3rβ/2/r2e^{-3 r \beta/2}/r^2, where β\beta is the de Sitter parameter of the brane. This is very different from the correction caused by a volcano-like effective potential.Comment: 24 pages, 13 figures, published versio

    Curvature perturbation in multi-field inflation with non-minimal coupling

    Full text link
    In this paper we discuss a multi-field model of inflation in which generally all fields are non-minimally coupled to the Ricci scalar and have non-canonical kinetic terms. The background evolution and first-order perturbations for the model are evaluated in both the Jordan and Einstein frames, and the respective curvature perturbations compared. We confirm that they are indeed not the same - unlike in the single-field case - and also that the difference is a direct consequence of the isocurvature perturbations inherent to multi-field models. This result leads us to conclude that the notion of adiabaticity is not invariant under conformal transformations. Using a two-field example we show that even if in one frame the evolution is adiabatic, meaning that the curvature perturbation is conserved on super-horizon scales, in general in the other frame isocurvature perturbations continue to source the curvature perturbation. We also find that it is possible to realise a particular model in which curvature perturbations in both frames are conserved but with each being of different magnitude. These examples highlight that the curvature perturbation itself, despite being gauge-invariant, does not correspond directly to an observable. The non-equivalence of the two curvature perturbations would also be important when considering the addition of Standard Model matter into the system.Comment: 21 pages, 2 figures, references added, typos corrected, version to appear in JCA

    Hybrid compactifications and brane gravity in six dimensions

    Full text link
    We consider a six-dimensional axisymmetric Einstein-Maxwell model of warped braneworlds. The bulk is bounded by two branes, one of which is a conical 3-brane and the other is a 4-brane wrapped around the axis of symmetry. The latter brane is assumed to be our universe. If the tension of the 3-brane is fine-tuned, it folds the internal two-dimensional space in a narrow cone, making sufficiently small the Kaluza-Klein circle of the 4-brane. An arbitrary energy-momentum tensor can be accommodated on this ring-like 4-brane. We study linear perturbations sourced by matter on the brane, and show that weak gravity is apparently described by a four-dimensional scalar-tensor theory. The extra scalar degree of freedom can be interpreted as the fluctuation of the internal space volume (or that of the circumference of the ring), the effect of which turns out to be suppressed at long distances. Consequently, four-dimensional Einstein gravity is reproduced on the brane. We point out that as in the Randall-Sundrum model, the brane bending mode is crucial for recovering the four-dimensional tensor structure in this setup.Comment: 15 pages, 2 figures; v2: references added; v3: accepted for publication in Class. Quant. Gra

    The Black Hole and Cosmological Solutions in IR modified Horava Gravity

    Full text link
    Recently Horava proposed a renormalizable gravity theory in four dimensions which reduces to Einstein gravity with a non-vanishing cosmological constant in IR but with improved UV behaviors. Here, I study an IR modification which breaks "softly" the detailed balance condition in Horava model and allows the asymptotically flat limit as well. I obtain the black hole and cosmological solutions for "arbitrary" cosmological constant that represent the analogs of the standard Schwartzschild-(A)dS solutions which can be asymptotically (A)dS as well as flat and I discuss some thermodynamical properties. I also obtain solutions for FRW metric with an arbitrary cosmological constant. I study its implication to the dark energy and find that it seems to be consistent with current observational data.Comment: Footnote 5 about the the very meaning of the horizons and Hawking temperature is added; Accepted in JHE

    Low energy effective theory on a regularized brane in 6D gauged chiral supergravity

    Get PDF
    We derive the low energy effective theory on a brane in six-dimensional chiral supergravity. The conical 3-brane singularities are resolved by introducing cylindrical codimension one 4-branes whose interiors are capped by a regular spacetime. The effective theory is described by the Brans-Dicke (BD) theory with the BD parameter given by ωBD=1/2\omega_{\rm BD}=1/2. The BD field is originated from a modulus which is associated with the scaling symmetry of the system. If the dilaton potentials on the branes preserve the scaling symmetry, the scalar field has an exponential potential in the Einstein frame. We show that the time dependent solutions driven by the modulus in the four-dimensional effective theory can be lifted up to the six-dimensional exact solutions found in the literature. Based on the effective theory, we discuss a possible way to stabilize the modulus to recover standard cosmology and also study the implication for the cosmological constant problem.Comment: 12 pages, 1 figur

    Exactly solvable model for cosmological perturbations in dilatonic brane worlds

    Full text link
    We construct a model where cosmological perturbations are analytically solved based on dilatonic brane worlds. A bulk scalar field has an exponential potential in the bulk and an exponential coupling to the brane tension. The bulk scalar field yields a power-law inflation on the brane. The exact background metric can be found including the back-reaction of the scalar field. Then exact solutions for cosmological perturbations which properly satisfy the junction conditions on the brane are derived. These solutions provide us an interesting model to understand the connection between the behavior of cosmological perturbations on the brane and the geometry of the bulk. Using these solutions, the behavior of an anisotropic stress induced on the inflationary brane by bulk gravitational fields is investigated.Comment: 30 pages, typos corrected, reference adde

    Caustic avoidance in Horava-Lifshitz gravity

    Full text link
    There are at least four versions of Horava-Lishitz gravity in the literature. We consider the version without the detailed balance condition with the projectability condition and address one aspect of the theory: avoidance of caustics for constant time hypersurfaces. We show that there is no caustic with plane symmetry in the absence of matter source if \lambda\ne 1. If \lambda=1 is a stable IR fixed point of the renormalization group flow then \lambda is expected to deviate from 1 near would-be caustics, where the extrinsic curvature increases and high-energy corrections become important. Therefore, the absence of caustics with \lambda\ne 1 implies that caustics cannot form with this symmetry in the absence of matter source. We argue that inclusion of matter source will not change the conclusion. We also argue that caustics with codimension higher than one will not form because of repulsive gravity generated by nonlinear higher curvature terms. These arguments support our conjecture that there is no caustic for constant time hypersurfaces. Finally, we discuss implications to the recently proposed scenario of ``dark matter as integration constant''.Comment: 19 pages; extended to general z \geq 3, typos corrected (v2); version accepted for publication in JCAP (v3

    Geometry and cosmological perturbations in the bulk inflaton model

    Full text link
    We consider a braneworld inflation model driven by the dynamics of a scalar field living in the 5-dimensional bulk, the so-called ``bulk inflaton model'', and investigate the geometry in the bulk and large scale cosmological perturbations on the brane. The bulk gravitational effects on the brane are described by a projection of the 5-dimensional Weyl tensor, which we denote by EμνE_{\mu\nu}. Focusing on a tachionic potential model, we take a perturbative approach in the anti-de Sitter (AdS5_5) background with a single de Sitter brane. We first formulate the evolution equations for EμνE_{\mu\nu} in the bulk. Next, applying them to the case of a spatially homogeneous brane, we obtain two different integral expressions for EμνE_{\mu\nu}. One of them reduces to the expression obtained previously when evaluated on the brane. The other is a new expression that may be useful for analyzing the bulk geometry. Then we consider superhorizon scale cosmological perturbations and evaluate the bulk effects onto the brane. In the limit H221H^2\ell^2\ll1, where HH is the Hubble parameter on the brane and \ell is the bulk curvature radius, we find that the effective theory on the brane is identical to the 4-dimensional Einstein-scalar theory with a simple rescaling of the potential even under the presence of inhomogeneities. % atleast on super-Hubble horizon scales. In particular, it is found that the anticipated non-trivial bulk effect due to the spatially anisotropic part of EμνE_{\mu\nu} may appear only at %second order in the low energy expansion, i.e., at O(H44)O(H^4\ell^4).Comment: 21 pages including 6 pages for several appendixes, no figure

    Consistency equations in Randall-Sundrum cosmology: a test for braneworld inflation

    Full text link
    In the context of an inflationary Randall-Sundrum Type II braneworld (RS2) we calculate spectral indices and amplitudes of cosmological scalar and tensor perturbations, up to second order in slow-roll parameters. Under very simple assumptions, extrapolating next-order formulae from first-order calculations in the case of a de Sitter brane, we see that the degeneracy between standard and braneworld lowest-order consistency equations is broken, thus giving different signatures of early-universe inflationary expansion. Using the latest results from WMAP for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard and braneworld scenarios.Comment: 13 pages; v3: supersedes the published version, corrected misprint
    corecore