99 research outputs found

    Possible evidence for "dark radiation" from Big Bang Nucleosynthesis Data

    Full text link
    We address the emerging discrepancy between the Big Bang Nucleosynthesis data and standard cosmology, which asks for a bit longer evolution time. If this effect is real, one possible implication (in a framework of brane cosmology model) is that there is a ``dark radiation'' component which is negative and makes few percents of ordinary matter density. If so, all scales of this model can be fixed, provided brane-to-bulk leakage problem is solved.Comment: We found that references to some nhumbers from unpublished ref.3 in v1 lead to confusion of some readers: we decided to removed those in v

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    4D gravity localized in non Z_2-symmetric thick branes

    Full text link
    We present a comparative analysis of localization of 4D gravity on a non Z_2-symmetric scalar thick brane in both a 5-dimensional Riemannian space time and a pure geometric Weyl integrable manifold. This work was mainly motivated by the hypothesis which claims that Weyl geometries mimic quantum behaviour classically. We start by obtaining a classical 4-dimensional Poincare invariant thick brane solution which does not respect Z_2-symmetry along the (non-)compact extra dimension. The scalar energy density of our field configuration represents several series of thick branes with positive and negative energy densities centered at y_0. The only qualitative difference we have encountered when comparing both frames is that the scalar curvature of the Riemannian manifold turns out to be singular for the found solution, whereas its Weylian counterpart presents a regular behaviour. By studying the transverse traceless modes of the fluctuations of the classical backgrounds, we recast their equations into a Schroedinger's equation form with a volcano potential of finite bottom (in both frames). By solving the Schroedinger equation for the massless zero mode m^2=0 we obtain a single bound state which represents a stable 4-dimensional graviton in both frames. We also get a continuum gapless spectrum of KK states with positive m^2>0 that are suppressed at y_0, turning into continuum plane wave modes as "y" approaches spatial infinity. We show that for the considered solution to our setup, the potential is always bounded and cannot adopt the form of a well with infinite walls; thus, we do not get a discrete spectrum of KK states, and we conclude that the claim that Weylian structures mimic, classically, quantum behaviour does not constitute a generic feature of these geometric manifolds.Comment: 13 pages, 4 figures, JHEP forma

    Spectrum from the warped compactifications with the de Sitter universe

    Full text link
    We discuss the spectrum of the tensor metric perturbations and the stability of warped compactifications with the de Sitter spacetime in the higher-dimensional gravity. The spacetime structure is given in terms of the warped product of the non-compact direction, the spherical internal dimensions and the four-dimensional de Sitter spacetime. To realize a finite bulk volume, we construct the brane world model, using the cut-copy-paste method. Then, we compactify the spherical directions on the brane. In any case, we show the existence of the massless zero mode and the mass gap of it with massive Kaluza-Klein modes. Although the brane involves the spherical dimensions, no light massive mode is excited. We also investigate the scalar perturbations, and show that the model is unstable due to the existence of a tachyonic bound state, which seems to have the universal negative mass square, irrespective of the number of spacetime dimensions.Comment: Journal version (JHEP

    Vacuum densities for a thick brane in AdS spacetime

    Full text link
    For a massive scalar field with general curvature coupling parameter we evaluate Wightman function, vacuum expectation values of the field square and the energy-momentum tensor induced by a Z2Z_{2}-symmetric brane with finite thickness located on (D+1)(D+1)-dimensional AdS bulk. For the general case of static plane symmetric interior structure the expectation values in the region outside the brane are presented as the sum of free AdS and brane induced parts. For a conformally coupled massless scalar the brane induced part in the vacuum energy-momentum tensor vanishes. In the limit of strong gravitational fields the brane induced parts are exponentially suppressed for points not too close to the brane boundary. As an application of general results a special model is considered in which the geometry inside the brane is a slice of the Minkowski spacetime orbifolded along the direction perpendicular to the brane. For this model the Wightman function, vacuum expectation values of the field square and the energy-momentum tensor inside the brane are evaluated. It is shown that for both minimally and conformally coupled scalar fields the interior vacuum forces acting on the brane boundaries tend to decrease the brane thickness.Comment: 12 pages, 2 figures, talk presented at QFEXT07, Leipzig, September 17-21, 200

    Low energy effective theory on a regularized brane in 6D gauged chiral supergravity

    Get PDF
    We derive the low energy effective theory on a brane in six-dimensional chiral supergravity. The conical 3-brane singularities are resolved by introducing cylindrical codimension one 4-branes whose interiors are capped by a regular spacetime. The effective theory is described by the Brans-Dicke (BD) theory with the BD parameter given by ωBD=1/2\omega_{\rm BD}=1/2. The BD field is originated from a modulus which is associated with the scaling symmetry of the system. If the dilaton potentials on the branes preserve the scaling symmetry, the scalar field has an exponential potential in the Einstein frame. We show that the time dependent solutions driven by the modulus in the four-dimensional effective theory can be lifted up to the six-dimensional exact solutions found in the literature. Based on the effective theory, we discuss a possible way to stabilize the modulus to recover standard cosmology and also study the implication for the cosmological constant problem.Comment: 12 pages, 1 figur

    Hybrid compactifications and brane gravity in six dimensions

    Full text link
    We consider a six-dimensional axisymmetric Einstein-Maxwell model of warped braneworlds. The bulk is bounded by two branes, one of which is a conical 3-brane and the other is a 4-brane wrapped around the axis of symmetry. The latter brane is assumed to be our universe. If the tension of the 3-brane is fine-tuned, it folds the internal two-dimensional space in a narrow cone, making sufficiently small the Kaluza-Klein circle of the 4-brane. An arbitrary energy-momentum tensor can be accommodated on this ring-like 4-brane. We study linear perturbations sourced by matter on the brane, and show that weak gravity is apparently described by a four-dimensional scalar-tensor theory. The extra scalar degree of freedom can be interpreted as the fluctuation of the internal space volume (or that of the circumference of the ring), the effect of which turns out to be suppressed at long distances. Consequently, four-dimensional Einstein gravity is reproduced on the brane. We point out that as in the Randall-Sundrum model, the brane bending mode is crucial for recovering the four-dimensional tensor structure in this setup.Comment: 15 pages, 2 figures; v2: references added; v3: accepted for publication in Class. Quant. Gra

    Stability of the de Sitter spacetime in Horava-Lifshitz theory

    Full text link
    The stability of de Sitter spacetime in Horava-Lifshitz theory of gravity with projectability but without detailed balance condition is studied. It is found that, in contrast to the case of the Minkowski background, the spin-0 graviton now is stable for any given ξ\xi, and free of ghost for ξ0\xi \le 0 in the infrared limit, where ξ\xi is the dynamical coupling constant.Comment: Mod. Phys. Lett. A25, 2267-2279 (2010

    de Sitter Thick Brane Solution in Weyl Geometry

    Full text link
    In this paper, we consider a de Sitter thick brane model in a pure geometric Weyl integrable five-dimensional space-time, which is a generalization of Riemann geometry and is invariant under a so-called Weyl rescaling. We find a solution of this model via performing a conformal transformation to map the Weylian structure into a familiar Riemannian one with a conformal metric. The metric perturbations of the model are discussed. For gravitational perturbation, we get the effective modified Po¨\ddot{\text{o}}schl-Teller potential in corresponding Schro¨\ddot{\text{o}}dinger equation for Kaluza-Klein (KK) modes of the graviton. There is only one bound state, which is a normalizable massless zero mode and represents a stable 4-dimensional graviton. Furthermore, there exists a mass gap between the massless mode and continuous KK modes. We also find that the model is stable under the scalar perturbation in the metric. The correction to the Newtonian potential on the brane is proportional to e3rβ/2/r2e^{-3 r \beta/2}/r^2, where β\beta is the de Sitter parameter of the brane. This is very different from the correction caused by a volcano-like effective potential.Comment: 24 pages, 13 figures, published versio

    Crossing the cosmological constant line in a dilatonic brane-world model with and without curvature corrections

    Full text link
    We construct a new brane-world model composed of a bulk -with a dilatonic field-, plus a brane -with brane tension coupled to the dilaton-, cold dark matter and an induced gravity term. It is possible to show that depending on the nature of the coupling between the brane tension and the dilaton this model can describe the late-time acceleration of the brane expansion (for the normal branch) as it moves within the bulk. The acceleration is produced together with a mimicry of the crossing of the cosmological constant line (w=-1) on the brane, although this crossing of the phantom divide is obtained without invoking any phantom matter neither on the brane nor in the bulk. The role of dark energy is played by the brane tension, which reaches a maximum positive value along the cosmological expansion of the brane. It is precisely at that maximum that the crossing of the phantom divide takes place. We also show that these results remain valid when the induced gravity term on the brane is switched off.Comment: 12 pages, 2 figures, RevTeX
    corecore