154 research outputs found

    Возраст грязевой брекчии грязев ых вулканов Академического хреб та озера Байка

    Get PDF
    Lake Baikal is the only freshwater reservoir on Earth with gas-hydrate accumulations in its bottom sediments, partly due to the activity of mud volcanoes. This paper describes a group of mud volcanoes recently discovered on the slope of the Academician Ridge between the northern and central Lake Baikal basins. Our analysis of diatom skeletons in the mud breccia sampled from the study area shows a high abundance of Cyclotella iris et var. These extinct species were also discovered in a core sample from BDP-98 borehole. Based on the biostratigraphic and seis-mostratigraphic correlations, the age of the mud breccia in the studied mud volcanoes ranges from the Late Miocene to the Early Pliocene (4.6 to 5.6 Ma). The correlations suggest that the material originated from a depth of less than 310 m below the lake bottom

    Gas hydrates in Lake Baikal

    Get PDF
    Subsurface gas hydrates over all the area of their potential occurrence under the floor of Lake Baikal, the only freshwater body where they occur, have been sought and studied since 2000. Two of three known gas hydrates cubic structures (structure 1 biogenic methane hydrates and structure 2 biogenic methane and thermogenic ethane hydrates) have been found in the lake sediments. Large autogenic carbonaceous formations atypical for the lake have been discovered in the areas of gas hydrates occurrence. A new so-called “Baikal” mud volcanoes formation mechanism with shallow roots previously unknown in the seas is described. This mechanism is related to destruction of gas hydrates under their stability zone due to a tectonic activity and warm fluid income. The focus and source of the gas-saturated fluid are determined to be buried depositions of delta fronts, depocenters in the middle of the basins and subsurface ancient sedimentation masses at the eastern flank. The 2018 integrated geological and geophysical survey allowed to discover 54 hydrate-bearing structures represented by 26 mud volcanoes, 18 hydrate mounds, 9 seeps and 1 pockmark. Not only sedimentation masses of various age and many kilometers thick, but also the tectonic dislocation grid determine the distribution of these structures on the floor of Lake Baikal. The fluid pathways are formed through impaired vertical and gently inclined zones of the main rift faults and secondary faults as well as along permeable lithological sedimentation boundaries when the layers rise from the depocenters in the center of the basin to its flanks.journal articl

    Isotopic fractionation of methane and ethane hydrates between gas and hydrate phases

    Get PDF
    Isotopic fractionation of carbon and hydrogen in methane and ethane during the formation of gas hydrates was investigated. The gas hydrate samples were experimentally prepared in a pressure cell and isotopic compositions of both residual and hydrate-bound gases were measured. dD of hydrate-bound molecules of methane and ethane hydrates was several per mil lower than that of residual gas molecules in the formation processes, while there was no difference in the case of d13C. These isotopic differences in dD are enough small for discussing the source types of hydrate-bound gases using the d13C-dD diagram of Whiticar et al. [1986]. These results may provide useful insight into the formation process of gas hydrates.journal articl

    Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal

    Get PDF
    Knowledge of cage occupancies and hydration numbers (n) of naturally occurring gas hydrate in a local environment is important for the improvement in global estimates of hydrate-bound natural gas. We report on local differences in cage occupancies and hydration number of gas hydrates from Lake Baikal. Natural gas hydrates of both structures I and II (sI and sII) and ranging in composition from pure CH4 to mixed gas hydrate containing up to 15% C2H6 are compared. The average hydration numbers are n = 6.1 for the sI CH4 hydrates recovered from the Malenky and Bolshoy mud volcanoes, n = 6.2 for the sI hydrates, containing 3?4% C2H6 recovered from the K-2 mud volcano, and n = 6.9 for the sII hydrate containing about 15% C2H6 recovered from the K-2 mud volcano. The differences in hydration number are due to the differences in the small cage occupancy of CH4 among the samples studied.journal articl

    Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data

    Get PDF
    We measured the isotopic compositions of methane (C1) and ethane (C2) of hydrate-bound gas and of dissolved gas in pore water retrieved from bottom sediments in Lake Baikal. Both structure I (sI:3%C2) and II (sII:14%C2) gas hydrates are observed in the same sediment cores in Kukuy K-2 mud volcano. We found that C2 dD of sI gas hydrate is larger than that of sII, whereas C1 d13C, C1 dD and C2 d13C values are practically the same in both hydrate structures. d13C of C1 and C2 of hydrate-bound gas are several permil smaller than those in pore water, showing that the current pore water is not the source of gas hydrates. These findings lead to a new model where the sII gas hydrates were formed prior to the sI hydrates.journal articl

    Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin

    Get PDF
    We report the field observation of hydrate deposits of different crystal structures in the same cores of a mud volcano in the Kukuy Canyon. We link those deposits to chemical fractionation during gas hydrate crystallization. Gas composition and crystallographic analyses of hydrate samples reveal involvement of two distinct gas source types in gas hydrate formation at present or in the past: microbial (methane) and thermogenic (methane and ethane) gas types. The clathrate structure II, observed for the first time in fresh water sediments, is believed to be formed by higher mixing of thermogenic gas.An edited version of this paper was published by AGU. Copyright 2006 American Geophysical Union.application/pdfjournal articl

    Impact of High Methane Flux on the Properties of Pore Fluid and Methane-Derived Authigenic Carbonate in the ARAON Mounds, Chukchi Sea

    Get PDF
    We investigated the pore fluid and methane-derived authigenic carbonate (MDAC) chemistry from the ARAON Mounds in the Chukchi Sea to reveal how methane (CH4) seepage impacts their compositional and isotopic properties. During the ARA07C and ARA09C Expeditions, many in situ gas hydrates (GHs) and MDACs were found near the seafloor. The fluid chemistry has been considerably modified in association with the high CH4 flux and its related byproducts (GHs and MDACs). Compared to Site ARA09C-St 08 (reference site), which displays a linear SO42- downcore profile, the other sites (e.g., ARA07C-St 13, ARA07C-St 14, ARA09C-St 04, ARA09C-St 07, and ARA09C-St 12) that are found byproducts exhibit concave-up and/or kink type SO42- profiles. The physical properties and fluid pathways in sediment columns have been altered by these byproducts, which prevents the steady state condition of the dissolved species through them. Consequently, chemical zones are separated between bearing and non-bearing byproducts intervals under non-steady state condition from the seafloor to the sulfate-methane transition (SMT). GH dissociation also significantly impacts pore fluid properties (e.g., low Cl-, enriched delta D and delta O-18). The upward CH4 with depleted delta C-13 from the thermogenic origin affects the chemical signatures of MDACs. The enriched delta O-18 fluid from GH dissociation also influences the properties of MDACs. Thus, in the ARAON Mounds, the chemistry of the fluid and MDAC has significantly changed, most likely responding to the CH4 flux and GH dissociation through geological time. Overall, our findings will improve the understanding and prediction of the pore fluid and MDAC chemistry in the Arctic Ocean related to CH4 seepage by global climate change
    corecore