32 research outputs found

    System Design of an Autonomous Underwater Robot “DaryaBird”

    Get PDF
    Various kinds of robots have been developed parallel with the progress of computers and information processing technology, and the operations in the extreme environments, such as disaster areas, space and ocean, are getting one of the practical solutions for those hazardous missions. The underwater robots are one of the extreme environment robots and expected as one of solutions for underwater activities i.e., maintenance of underwater structures, observations, scientific research, where research area is getting wide and deep and also underwater structures are getting large-scale and deep-depth. Their efficiencies have been investigated during recent decades and are proven by ocean experiments. However, the robotic system including the support vessels is still big scale, and not so easy to handle by a few researchers. In this paper, we describe the design of an underwater robot “DaryaBird” developed aiming at handy, small underwater robots which can be operated by a few researchers. In addition, experimental results and mission strategies for AUVC 2010 are reported.AUVSI & ONR\u27s 13th AUVSI 2010 : Association for Unmanned Vehicle Systems International (AUVSI) North America 2010, Aug 24-27, 2010, Denver, CO., US

    MondoA and AKI and AKI-to-CKD Transition

    Get PDF
    Maeda S., Sakai S., Takabatake Y., et al. MondoA and AKI and AKI-to-CKD Transition. Journal of the American Society of Nephrology , (2024); https://doi.org/10.1681/ASN.0000000000000414.Key PointsThe expression of MondoA was decreased in the renal tubules of patients with CKD.Genetic ablation of MondoA in proximal tubules inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon.MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the transcription factor EB-peroxisome proliferator-activated receptor-γ coactivator-1α axis.BackgroundElderly individuals and patients with CKD are at a higher risk of AKI. The transcription factor MondoA is downregulated in the kidneys of aged individuals or patients with AKI; however, its roles in AKI development and the AKI-to-CKD transition remain unknown.MethodsWe investigated the expression of MondoA in human kidney biopsy samples, ischemia-reperfusion-injured (IRI) mouse kidneys, and cultured proximal tubular epithelial cells under hypoxia/reoxygenation. The role of MondoA during the initial and recovery phases after IRI was evaluated using proximal tubule-specific MondoA knockout mice and MondoA-deficient proximal tubular epithelial cells. Furthermore, we explored the involvement of Rubicon and transcription factor EB (TFEB), both of which are downstream factors of MondoA.ResultsMONDOA expression was decreased in the renal tubules of patients with CKD. In mouse kidneys, MondoA expression was decreased under ischemia, whereas its expression was increased during reperfusion. Genetic ablation of MondoA in proximal tubular epithelial cells inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon. Ablation of Rubicon in MondoA-deficient IRI kidneys activated autophagy and protected mitochondrial function. MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the TFEB-peroxisome proliferator-activated receptor-γ coactivator-1α axis. Pharmacological upregulation of TFEB contributed to maintaining mitochondrial biogenesis and increased peroxisome proliferator-activated receptor-γ coactivator-1α transcription.ConclusionsOur findings demonstrate that MondoA protected against vulnerability to AKI by maintaining autophagy and subsequently supporting mitochondrial function to prevent progression to CKD
    corecore