79 research outputs found

    Maternal outcome in pregnancy with sickle cell trait haemoglobinopathie

    Get PDF
    Background: Sickle cell trait, the heterozygous state for sickle cell disorders (SCD), which is associated with various obstetrical and non- obstetrical complication. Our objective was to study the pregnancy outcome in women with sickle cell trait.Methods: A prospective observational study was conducted collecting data from medical records of around 40 consecutive consenting subjects admitted in a tertiary health care center of south Gujarat over a period of May 2020 to April 2021 after Human Research Ethics Committee (HREC) approval.Results: In our study majority of the subjects (52.5%) belonged to age group of 18-25 years, majority (62.5%) of subjects were belonged to tribal population. Majority (92.5%) of subjects in our study diagnosed as sickle cell trait post -conceptional. 67% of subjects had various antenatal maternal morbidity among them anemia (45%); preterm labour (12.5%); hypertensive disorder (7.5%) and respiratory failure (2.5%). 65% of our subjects were delivered vaginaly. 5% of subjects had post- partum complication.Conclusions: Though sickle cell trait is considered as a low risk factor during pregnancy, expansion of SCT screening and educational efforts, the availability of reproductive technologies, and the increasing research on clinical complications of SCT have important implications for reproductive and genetic counselling guidelines

    A prospective observational study of foetal outcome in twin pregnancy delivering at a tertiary health care center of South Gujarat

    Get PDF
    Background: Worldwide increased incidence of twin gestation. The rates of twin gestation have a direct effect on the rates of preterm birth and its co-morbidities. Importantly, this increased risk applies to each fetus and is not simply the result of more foetuses.Methods: This prospective study was carried out in department of obstetrics and gynaecology. 100 consecutive subjects fulfilling inclusion criteria   admitted to labour room and obstetrics intensive care enrolled over a period of around 1 year.Results: In this study twin delivery accounted for 1.3% of all delivery at our institute. On analysing neonatal morbidities Prematurity was commonest 65%, VLBW (23% first twin, 30% second twin), RDS (9% first twin, 13% second twin), birth asphyxia (7% first twin, 12% second twin), neonatal hyperbilirubinemia (7% first twin, 8% second twin). 34% of first twin and 40% of second twin required NICU admission. Early neonatal death observed in 6% of first twin and 8% of second twin. It was observed that proportion of neonatal complications was more in MCDA as compared to DCDA and in un-booked subjects as compared to booked subjects. This difference is statistically significant among both twin (p value<0.05).Conclusions: Twin pregnancy is associated with high perinatal morbidity. Specialized obstetrics and Intensive Neonatal care can decrease neonatal morbidity and mortality in twin gestation. We need to be extra vigilant in monochorionic twins and twin pregnancy with inadequate antenatal care

    JAK2/IDH-mutant–driven myeloproliferative neoplasm is sensitive to combined targeted inhibition

    Get PDF
    Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617Fand mutant IDH1R132Hor Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617FIdh2R140Q–mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mutand IDH2mutmutations. Taken together, these data suggest that combined JAK and IDH inhibition May offer a therapeutic advantage in this high-risk MPN subtype.Damon Runyon Cancer Research Foundation (DRG-2241-15)Howard Hughes Medical Institute (Faculty Scholars Award)Stand Up To CancerNational Cancer Institute (U.S.) (P50CA165962)National Cancer Institute (U.S.) (P30CA14051)Koch Institute for Integrative Cancer Research ( Dana-Farber Harvard Cancer Center Bridge Project)Leukemia & Lymphoma Society of America. Specialized Center of Research (SCOR) ProgramNational Institutes of Health (U.S.) (grant U54OD020355-01)National Institutes of Health (U.S.) (grant NCI R01CA172636)National Institutes of Health (U.S.) (grant R35CA197594)National Cancer Institute (U.S.) (Cancer Center Support Grant (P30 CA008747)

    Chronic exposure to outdoor air pollution and diagnosed cardiovascular disease: meta-analysis of three large cross-sectional surveys

    Get PDF
    BACKGROUND: Higher exposure to outdoor air pollution is associated with increased cardiopulmonary deaths, but there is limited evidence about the association between outdoor air pollution and diagnosed cardiovascular disease. Our study aimed to estimate the size of the association between long term exposure to outdoor air pollution and prevalent cardiovascular disease. METHODS: We carried out a cross-sectional analysis of data on more than 19,000 white adults aged 45 and older who participated in three representative surveys of the English population in 1994, 1998 and 2003, examining the relationship between self-reported doctor-diagnosed cardiovascular disease and exposure to outdoor air pollutants using multilevel regression techniques and meta-analysis. RESULTS: The combined estimates suggested that an increase of 1 microg m-3 in concentration of particulate matter less than 10 microns in diameter was associated with an increase of 2.9% (95% CI -0.6% to 6.5%) in prevalence of cardiovascular disease in men, and an increase of 1.6% (95%CI -2.1% to 5.5%) in women. The year-specific analyses showed strongly positive associations in 2003 between odds of cardiovascular disease in both men and women and exposure to particulate matter but not in 1994 or 1998. We found no consistent associations between exposure to gaseous air pollutants and doctor-diagnosed cardiovascular disease. CONCLUSION: The associations of prevalent cardiovascular disease with concentration of particulate matter less than 10 microns in diameter, while only weakly positive, were consistent with the effects reported in cohort studies. The results provide evidence of the size of the association between particulate air pollution and the prevalence of cardiovascular disease but no evidence for an association with gaseous pollutants. We found strongly positive associations between particulate matter and cardiovascular disease in 2003 only, which highlights the importance of replicating findings in more than one population

    A spatially resolved atlas of the human lung characterizes a gland-associated immune niche

    Get PDF
    Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health

    Molecular Predictors of Immunophenotypic Measurable Residual Disease Clearance in Acute Myeloid Leukemia

    Get PDF
    Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered

    Cells of the human intestinal tract mapped across space and time.

    Get PDF
    Funder: Medical Research CouncilThe cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease

    Cells of the human intestinal tract mapped across space and time

    Get PDF
    Acknowledgements We acknowledge support from the Wellcome Sanger Cytometry Core Facility, Cellular Genetics Informatics team, Cellular Generation and Phenotyping (CGaP) and Core DNA Pipelines. This work was financially supported by the Wellcome Trust (W1T20694, S.A.T.; 203151/Z/16/Z, R. A. Barker.); the European Research Council (646794, ThDefine, S.A.T.); an MRC New Investigator Research Grant (MR/T001917/1, M.Z.); and a project grant from the Great Ormond Street Hospital Children’s Charity, Sparks (V4519, M.Z.). The human embryonic and fetal material was provided by the Joint MRC/Wellcome (MR/R006237/1) Human Developmental Biology Resource (https://www.hdbr.org/). K.R.J. holds a Non-Stipendiary Junior Research Fellowship from Christ’s College, University of Cambridge. M.R.C. is supported by a Medical Research Council Human Cell Atlas Research Grant (MR/S035842/1) and a Wellcome Trust Investigator Award (220268/Z/20/Z). H.W.K. is funded by a Sir Henry Wellcome Fellowship (213555/Z/18/Z). A.F. is funded by a Wellcome PhD Studentship (102163/B/13/Z). K.T.M. is funded by an award from the Chan Zuckerberg Initiative. H.H.U. is supported by the Oxford Biomedical Research Centre (BRC) and the The Leona M. and Harry B. Helmsley Charitable Trust. We thank A. Chakravarti and S. Chatterjee for their contribution to the analysis of the enteric nervous system. We also thank R. Lindeboom and C. Talavera-Lopez for support with epithelium and Visium analysis, respectively; C. Tudor, T. Li and O. Tarkowska for image processing and infrastructure support; A. Wilbrey-Clark and T. Porter for support with Visium library preparation; A. Ross and J. Park for access to and handling of fetal tissue; A. Hunter for assistance in protocol development; D. Fitzpatrick for discussion on developmental intestinal disorders; and J. Eliasova for the graphical images. We thank the tissue donors and their families, and the Cambridge Biorepository for Translational Medicine and Human Developmental Biology Resource, for access to human tissue. This publication is part of the Human Cell Atlas: https://www.humancellatlas.org/publications.Peer reviewedPublisher PD

    Models of <i>KPTN</i>-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes

    Get PDF
    KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.</p
    corecore