564 research outputs found

    Logarithmic correction to scaling for multi-spin strings in the AdS_5 black hole background

    Full text link
    We find new explicit solutions describing closed strings spinning with equal angular momentum in two independent planes in the AdS5AdS_5 black hole spacetime. These are 2n2n folded strings in the radial direction and also winding mm times around an angular direction. We especially consider these solutions in the long string and high temperature limit, where it is shown that there is a logarithmic correction to the scaling between energy and spin. This is similar to the one-spin case. The strings are spinning, or actually orbiting around the black hole of the AdS5AdS_5 black hole spacetime, similarly to solutions previously found in black hole spacetimes.Comment: 11 pages, Final version, To appear in IJMP

    Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons

    Get PDF
    Both in string field theory and in p-adic string theory the equations of motion involve infinite number of time derivatives. We argue that the initial value problem is qualitatively different from that obtained in the limit of many time derivatives in that the space of initial conditions becomes strongly constrained. We calculate the energy-momentum tensor and study in detail time dependent solutions representing tachyons rolling on the p-adic string theory potentials. For even potentials we find surprising small oscillations at the tachyon vacuum. These are not conventional physical states but rather anharmonic oscillations with a nontrivial frequency--amplitude relation. When the potentials are not even, small oscillatory solutions around the bottom must grow in amplitude without a bound. Open string field theory resembles this latter case, the tachyon rolls to the bottom and ever growing oscillations ensue. We discuss the significance of these results for the issues of emerging closed strings and tachyon matter.Comment: 46 pages, 14 figures, LaTeX. Replaced version: Minor typos corrected, some figures edited for clarit

    Yang-Mills theory from non-critical string

    Get PDF
    The correspondence of the non-critical string theory and the Yang-Mills theory is examined according to the recent Polyakov's proposal, and two possible solutions of the bulk equations are addressed near the fixed points of the pure Yang-Mills theory: (i) One solution asymptotically approaches to the AdS space at the ultraviolet limit where the conformally invariant field theory is realized. (ii) The second one approaches to the flat space in both the infrared and the ultraviolet limits. The area law of the Wilson-loop and the asymptotic freedom with logarithmic behaviour are seen in the respective limit.Comment: 17 pages, no figure, Late

    Beta-functions in Yang-Mills Theory from Non-critical String

    Full text link
    The renormalization group equations of the Yang-Mills theory are examined in the non-critical string theory according to the framework of the holography. Under a simple ansatz for the tachyon, we could find several interesting solutions which are classified by the value of the tachyon potential at the vacuum. We show two typical, asymptotic-free solutions which are different in their infrared behaviors. For both types of solutions, we could obtain quark-confinement potential from the Wilson-loop. The stability of the tachyon and the ZigZag symmetry are also discussed for these solutions.Comment: 16 pages, 5 figure

    Quasilocality of joining/splitting strings from coherent states

    Full text link
    Using the coherent state formalism we calculate matrix elements of the one-loop non-planar dilatation operator of N=4{\cal N}=4 SYM between operators dual to folded Frolov-Tseytlin strings and observe a curious scaling behavior. We comment on the {\it qualitative} similarity of our matrix elements to the interaction vertex of a string field theory. In addition, we present a solvable toy model for string splitting and joining. The scaling behaviour of the matrix elements suggests that the contribution to the genus one energy shift coming from semi-classical string splitting and joining is small.Comment: 17 pages, 7 figures in 11 file

    Aspects of Tachyonic Inflation with Exponential Potential

    Full text link
    We consider issues related to tachyonic inflation with exponential potential. We find exact solution of evolution equations in the slow roll limit in FRW cosmology. We also carry out similar analysis in case of Brane assisted tachyonic inflation. We investigate the phase space behavior of the system and show that the dust like solution is a late time attractor. The difficulties associated with reheating in the tachyonic model are also indicated.Comment: New References added. To appear in Phys. Rev.

    New Global Defect Structures

    Full text link
    We investigate the presence of defects in systems described by real scalar field in (D,1) spacetime dimensions. We show that when the potential assumes specific form, there are models which support stable global defects for D arbitrary. We also show how to find first-order differential equations that solve the equations of motion, and how to solve models in D dimensions via soluble problems in D=1. We illustrate the procedure examining specific models and finding explicit solutions.Comment: RevTex4, 4 pages, 3 eps figures; to be published in Phys. Rev. Let

    Effective theory for wall-antiwall system

    Full text link
    We propose a useful method for deriving the effective theory for a system where BPS and anti-BPS domain walls coexist. Our method respects an approximately preserved SUSY near each wall. Due to the finite width of the walls, SUSY breaking terms arise at tree-level, which are exponentially suppressed. A practical approximation using the BPS wall solutions is also discussed. We show that a tachyonic mode appears in the matter sector if the corresponding mode function has a broader profile than the wall width.Comment: LaTeX file, 30 page, 5 eps figures, references adde

    On one-loop correction to energy of spinning strings in S^5

    Full text link
    We revisit the computation (hep-th/0306130) of 1-loop AdS_5 x S^5 superstring sigma model correction to energy of a closed circular string rotating in S^5. The string is spinning around its center of mass with two equal angular momenta J_2=J_3 and its center of mass angular momentum is J_1. We revise the argument in hep-th/0306130 that the 1-loop correction is suppressed by 1/J factor (J= J_1 + 2 J_2 is the total SO(6) spin) relative to the classical term in the energy and use numerical methods to compute the leading 1-loop coefficient. The corresponding gauge theory result is known (hep-th/0405055) only in the J_1=0 limit when the string solution becomes unstable and thus the 1-loop shift of the energy formally contains an imaginary part. While the comparison with gauge theory may not be well-defined in this case, our numerical string theory value of the 1-loop coefficient seems to disagree with the gauge theory one. A plausible explanation should be (as in hep-th/0405001) in the different order of limits taken on the gauge theory and the string theory sides of the AdS/CFT duality.Comment: 21 pages, 8 figure

    Anomalous dimension and local charges

    Get PDF
    AdS space is the universal covering of a hyperboloid. We consider the action of the deck transformations on a classical string worldsheet in AdS5Ă—S5AdS_5\times S^5. We argue that these transformations are generated by an infinite linear combination of the local conserved charges. We conjecture that a similar relation holds for the corresponding operators on the field theory side. This would be a generalization of the recent field theory results showing that the one loop anomalous dimension is proportional to the Casimir operator in the representation of the Yangian algebra.Comment: 10 pages, LaTeX; v2: added explanations, reference
    • …
    corecore